OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18842–18848

11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection

Junwen Zhang, Jianjun Yu, Fan Li, Nan Chi, Ze Dong, and Xinying Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18842-18848 (2013)
http://dx.doi.org/10.1364/OE.21.018842


View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a novel WDM-CAP-PON based on optical single-side band (OSSB) multi-level multi-band carrier-less amplitude and phase modulation (MM-CAP). To enable high-speed transmission with simplified optical network unit (ONU)-side digital signal processing, 4-level 5 sub-bands CAP-16 is used here, which is generated by the digital to analogue converter (DAC). Optical single-side band (OSSB) technology is applied to extend the transmission distance against the spectrum fading effect. As a proof of concept, the experiment successfully demonstrates 11 WDM channels, 55 sub-bands, for 55 users with 9.3-Gb/s per user (after removing 7% overhead for forward error correction (FEC)) in the downstream over 40-km SMF.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 12, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 27, 2013
Published: August 1, 2013

Citation
Junwen Zhang, Jianjun Yu, Fan Li, Nan Chi, Ze Dong, and Xinying Li, "11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection," Opt. Express 21, 18842-18848 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011). [CrossRef]
  2. G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw.1(4), C35–C50 (2009). [CrossRef]
  3. J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006). [CrossRef]
  4. A. Wiberg, B. Olsson, and P. Andrekson, “Single cycle subcarrier modulation,” in Proc. OFC2009, paper OTuE1. [CrossRef]
  5. J. Karout, M. Karlsson, and E. Agrell, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express18(17), 17913–17921 (2010). [CrossRef] [PubMed]
  6. J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012). [CrossRef]
  7. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010). [CrossRef] [PubMed]
  8. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012). [CrossRef]
  9. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol.31(9), 1367–1373 (2013). [CrossRef]
  10. J. D. Ingham, R. Penty, I. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. OFC2011, paper OThZ3.
  11. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011). [CrossRef] [PubMed]
  12. M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012). [CrossRef]
  13. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Proc. of OFC2013, paper PDP5C.10.
  14. J. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. White, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in Proc. of OFC2013, paper OW4A.5. [CrossRef]
  15. L. Tao, Y. Wang, Y. Gao, A. P. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express21(5), 6459–6465 (2013). [CrossRef] [PubMed]
  16. G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995). [CrossRef]
  17. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  18. J. Zhang, J. Yu, L. Tao, Y. Fang, Y. Wang, Y. Shao, and N. Chi, “Generation of coherent and frequency-lock optical subcarriers by cascading phase modulators driven by sinusoidal sources,” J. Lightwave Technol.30(24), 3911–3917 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited