OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18899–18908

Zero-frequency refractivity of water vapor, comparison of Debye and van-Vleck Weisskopf theory

D. Grischkowsky, Yihong Yang, and Mahboubeh Mandehgar  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18899-18908 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that the zero-frequency, refractivity of water vapor calculated by the van-Vleck Weisskopf theory via a summation over all the water lines from 22.2 GHz to 30 THz can explain all of the previous measurements from 0.5 MHz to microwave, mm-waves and THz frequencies. This result removes a long standing discrepancy in comparisons of measurements and theory, and is in excellent agreement with experiments.

© 2013 OSA

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(250.0250) Optoelectronics : Optoelectronics
(320.7160) Ultrafast optics : Ultrafast technology
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 15, 2013
Manuscript Accepted: July 23, 2013
Published: August 1, 2013

D. Grischkowsky, Yihong Yang, and Mahboubeh Mandehgar, "Zero-frequency refractivity of water vapor, comparison of Debye and van-Vleck Weisskopf theory," Opt. Express 21, 18899-18908 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Stranathan, “Dielectric constant of water vapor,” Phys. Rev.48(6), 538–544 (1935). [CrossRef]
  2. C. M. Crain, “The dielectric constant of several gases at a wave-length of 3.2 centimeters,” Phys. Rev.74(6), 691–693 (1948). [CrossRef]
  3. G. Birnbaum and S. K. Chatterjee, “The dielectric constant of water vapor in the microwave region,” J. Appl. Phys.23(2), 220–223 (1952). [CrossRef]
  4. L. Essen, “The refractive indices of water vapour, air, oxygen, nitrogen, hydrogen, deuterium and helium,” Proc. Phys. Soc. B66(3), 189–193 (1953). [CrossRef]
  5. L. Essen and K. D. Froome, “The refractive indices and dielectric constants of air and its principal constituents at 24,000 Mc/s,” Proc. Phys. Soc. B64(10), 862–875 (1951). [CrossRef]
  6. K. D. Froome, “The refractive indices of water vapour, air, oxygen, nitrogen and argon at 72 kMc/s,” Proc. Phys. Soc. B68(11), 833–835 (1955). [CrossRef]
  7. T. Manabe, Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono, “Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz,” Int. J. Infrared Millim. Waves6(4), 313–322 (1985). [CrossRef]
  8. C. C. Bradley and H. A. Gebbie, “Refractive index of nitrogen, water vapor, and their mixtures at submillimeter wavelengths,” Appl. Opt.10(4), 755–758 (1971). [CrossRef] [PubMed]
  9. H. Matsumoto, “The refractive index of moist air in the 3-µm region,” Metrologia18(2), 49–52 (1982). [CrossRef]
  10. R. J. Hill and R. S. Lawrence, “Refractive index of water vapor in the infrared windows,” Infrared Phys.26(6), 371–376 (1986). [CrossRef]
  11. R. Schödel, A. Walkov, and A. Abou-Zeid, “High-accuracy determination of water vapor refractivity by length interferometry,” Opt. Lett.31(13), 1979–1981 (2006). [CrossRef] [PubMed]
  12. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express20(24), 26208–26218 (2012). [CrossRef] [PubMed]
  13. P. Debye, Polar molecules, 89–90 (Dover Publ. Co., New York, N.Y., 1957).
  14. B. R. Bean and E. J. Dutton, Radio Meteorology, Monograph #92 (National Bureau of Standards, 1966), Chap. 1.
  15. J. H. Van Vleck and V. F. Weisskopf, “On the shape of collision-broadened lines,” Rev. Mod. Phys.17(2-3), 227–236 (1945). [CrossRef]
  16. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publ. Co., 1975).
  17. A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds., Atmospheric Water Vapor (Academic Press, 1980). This book is the Proceedings of the International Workshop on Atmospheric Water Vapor, Vail, Colorado, September 11–13, 1979.
  18. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Sub-millimeter, millimeter, and microwave spectral line catalog,” JQSRT60(5), 883–890 (1998).Access to specific catalog entries may be found at http://spec.jpl.nasa.gov/ . [CrossRef]
  19. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  20. S. Golden, T. Wentink, R. Hillger, and M. Strandberg, “Stark spectrum of H2O,” Phys. Rev.73(1), 92–93 (1948). [CrossRef]
  21. Y. Beers and G. P. Klein, “The Stark splitting of millimeter wave transitions of water,” J. Res. Natl. Bur. Stand., Sect. A76a, 521–528 (1972).
  22. S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman, “Dipole moment of water from Stark measurements of H2O, HDO, and D2O,” J. Chem. Phys.59(5), 2254–2259 (1973). [CrossRef]
  23. T. R. Dyke and J. S. Muenter, “Electric dipole moments of low J states of H2O and D2O,” J. Chem. Phys.59(6), 3125–3127 (1973). [CrossRef]
  24. S. L. Shostak, W. L. Ebenstein, and J. S. Muenter, “The dipole moment of water. I. Dipole moments and hyperfine properties of H2O and HDO in the ground and excited vibrational states,” J. Chem. Phys.94(9), 5875–5882 (1991). [CrossRef]
  25. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse transmission in the atmosphere,” IEEE Trans. THz Sci. Technol.2, 406–415 (2012).
  26. Private communication from referee of [12].
  27. H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves12(7), 659–675 (1991). [CrossRef]
  28. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett.240(4), 330–333 (1995). [CrossRef]
  29. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem.100(24), 10373–10379 (1996). [CrossRef]
  30. C. Ro̸nne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys.107(14), 5319–5331 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited