OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18909–18918

Characterization of azimuthal and longitudinal modes in rolled-up InGaAs/GaAs microtubes at telecom wavelengths

Qiuhang Zhong, Zhaobing Tian, M. Hadi Tavakoli Dastjerdi, Zetian Mi, and David V. Plant  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18909-18918 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on theoretical and experimental investigation of azimuthal and longitudinal modes in rolled-up microtubes at telecom wavelengths. These microtubes are fabricated by selectively releasing a coherently strained InGaAs/GaAs bilayer. We apply planar waveguide method and a quasi-potential model to analyze the azimuthal and longitudinal modes in the microtubes near 1550 nm. Then we demonstrate these modes in transmission spectrum by evanescent light coupling. The experimental observations agree well with the calculated results. Surface-scattering-induced mode splitting is also observed in both transmission and reflection spectra at ~1600 nm. The mode splitting is in essence the non-degeneracy of clockwise and counter-clockwise whispering-gallery modes of the microtubes. This study is significant for understanding the physics of modes in microtubes and other microcavities with three-dimensional optical confinement, as well as for potential applications such as microtube-based photonic integrated devices and sensing purposes.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3945) Lasers and laser optics : Microcavities
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: June 20, 2013
Revised Manuscript: July 14, 2013
Manuscript Accepted: July 30, 2013
Published: August 1, 2013

Qiuhang Zhong, Zhaobing Tian, M. Hadi Tavakoli Dastjerdi, Zetian Mi, and David V. Plant, "Characterization of azimuthal and longitudinal modes in rolled-up InGaAs/GaAs microtubes at telecom wavelengths," Opt. Express 21, 18909-18918 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000). [CrossRef]
  2. O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001). [CrossRef] [PubMed]
  3. O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002). [CrossRef]
  4. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006). [CrossRef] [PubMed]
  5. X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D41(19), 193001 (2008). [CrossRef]
  6. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006). [CrossRef]
  7. Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009). [CrossRef]
  8. F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009). [CrossRef] [PubMed]
  9. F. Li and Z. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009). [CrossRef] [PubMed]
  10. I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010). [CrossRef]
  11. P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012). [CrossRef]
  12. J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012). [CrossRef]
  13. Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011). [CrossRef] [PubMed]
  14. S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012). [CrossRef]
  15. S. Bhowmick, T. Frost, and P. Bhattacharya, “Quantum dot rolled-up microtube optoelectronic integrated circuit,” Opt. Lett.38(10), 1685–1687 (2013). [CrossRef]
  16. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008). [CrossRef]
  17. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010). [CrossRef] [PubMed]
  18. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011). [CrossRef] [PubMed]
  19. V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012). [CrossRef]
  20. Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011). [CrossRef] [PubMed]
  21. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  22. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008). [CrossRef] [PubMed]
  23. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009). [CrossRef]
  24. Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012). [CrossRef]
  25. Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010). [CrossRef]
  26. Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011). [CrossRef] [PubMed]
  27. Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Counter-propagating whispering-gallery-modes of InGaAs/GaAs microtubes,” in CLEO, (Optical Society of America, 2013), paper JTu4A.49.
  28. Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).
  29. S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012). [CrossRef]
  30. S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013). [CrossRef]
  31. T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics4(1), 9–10 (2010). [CrossRef]
  32. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]
  33. J. C. Palais, Fiber Optics Communications (Pearson/Prentice Hall, 2005).
  34. V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009). [CrossRef] [PubMed]
  35. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc., 1991), Chap. 3.
  36. A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007). [CrossRef] [PubMed]
  37. J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010). [CrossRef] [PubMed]
  38. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett.37(9), 1586–1588 (2012). [CrossRef] [PubMed]
  39. M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited