OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18963–18968

Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides

Yang Tan, Qingfang Luan, Fengqin Liu, Feng Chen, and Javier Rodríguez Vázquez de Aldana  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18963-18968 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2005 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

© 2013 OSA

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.5690) Materials : Rare-earth-doped materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 24, 2013
Revised Manuscript: July 24, 2013
Manuscript Accepted: July 25, 2013
Published: August 1, 2013

Yang Tan, Qingfang Luan, Fengqin Liu, Feng Chen, and Javier Rodríguez Vázquez de Aldana, "Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides," Opt. Express 21, 18963-18968 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008). [CrossRef]
  2. Y. Chen, W. Liu, Y. Bo, B. Jiang, J. Xu, J. Li, Y. Xu, Y. Pan, J. L. Xu, X. Feng, Y. Guo, Y. Shen, F. Yang, L. Yuan, H. Yuan, Q. Peng, D. Cui, and Z. Xu, “High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser,” Appl. Phys. B111(1), 111–116 (2013). [CrossRef]
  3. S. Men, Z. Liu, X. Zhang, Q. Wang, H. Shen, F. Bai, L. Gao, X. Xu, R. Wei, and X. Chen, “A graphene passively Q-switched Nd:YAG ceramic laser at 1123 nm,” Laser Phys. Lett.10(3), 035803 (2013). [CrossRef]
  4. G. Xie, D. Tang, J. Kong, and L. Qian, “Passive mode-locking of a Nd:YAG ceramic laser by optical interference modulation in a GaAs wafer,” Opt. Express15(9), 5360–5365 (2007). [CrossRef] [PubMed]
  5. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007). [CrossRef] [PubMed]
  6. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D Appl. Phys.43(7), 075105 (2010). [CrossRef]
  7. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. (Wiley online early view) DOI: [CrossRef]
  8. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009). [CrossRef]
  9. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  10. Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express21(12), 13992–13997 (2013). [CrossRef] [PubMed]
  11. F. M. Bain, W. F. Silva, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, A. K. Kar, W. Sibbett, D. Jaque, and C. T. A. Brown, “Microspectroscopy of ultrafast laser inscribed channel waveguides in Yb:tungstate crystals,” Appl. Phys. Lett.98(14), 141108 (2011). [CrossRef] [PubMed]
  12. Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006). [CrossRef]
  13. T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011). [CrossRef]
  14. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012). [CrossRef] [PubMed]
  15. Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics,” Opt. Mater. Express3(5), 645–650 (2013). [CrossRef]
  16. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  17. A. Okhrimchuk, “Femtosecond fabrication of waveguides in ion-doped laser crystal,” in Coherence and Ultrashort Pulse Laser Emission, F. J. Duarte, ed., (InTech, 2010).
  18. T. Calmano, A.-G. Paschke, S. Mueller, C. Kraenkel, and G. Huber, “Q-Switched Operation of a fs-Laser Written Nd:YAG/Cr4+:YAG Monolithic Waveguide Laser,” in OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper IF2A.4.
  19. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett.34(24), 3881–3883 (2009). [CrossRef] [PubMed]
  20. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  21. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron.27(9), 2220–2225 (1991). [CrossRef]
  22. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B16(3), 376–388 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited