OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18969–18974

Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons

Yudong Cui and Xueming Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18969-18974 (2013)
http://dx.doi.org/10.1364/OE.21.018969


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a bidirectional erbium-doped fiber laser mode-locked with a mixture of graphene and single-walled carbon nanotubes for the first time to our best knowledge. The fiber laser can deliver dissipative soliton (DS) and conventional soliton (CS), circulating in opposite directions. The net-cavity dispersion is normal in the clockwise direction and anomalous in counter clockwise direction, respectively, and then DS and CS are generated with the suitable adjustment of attenuators. The output DS and CS approximately have the same central wavelength, but exhibit different optical spectra, pulse durations, and repetition rates. The all-fiber switchable laser can provide two different pulse sources, which is convenient for practical applications.

© 2013 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 24, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 29, 2013
Published: August 1, 2013

Citation
Yudong Cui and Xueming Liu, "Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons," Opt. Express 21, 18969-18974 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009). [CrossRef]
  2. X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011). [CrossRef]
  3. D. Mao, X. Liu, and H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett.37(13), 2619–2621 (2012). [CrossRef] [PubMed]
  4. L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express20(19), 20992–20997 (2012). [CrossRef] [PubMed]
  5. X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express17(12), 9549–9557 (2009). [CrossRef] [PubMed]
  6. Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009). [CrossRef]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  8. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009). [CrossRef]
  9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  10. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012). [CrossRef] [PubMed]
  11. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  12. D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors,” J. Phys. Chem. Lett.1(2), 467–470 (2010). [CrossRef]
  13. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, “A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical Limiting property,” Adv. Mater.21(12), 1275–1279 (2009). [CrossRef]
  14. H. Haus and W. Wong, “Solitons in optical communications,” Rev. Mod. Phys.68(2), 423–444 (1996). [CrossRef]
  15. X. M. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express19(7), 5874–5887 (2011). [CrossRef] [PubMed]
  16. D. Han and X. Liu, “Sideband-controllable mode-locking fiber laser based on chirped fiber Bragg gratings,” Opt. Express20(24), 27045–27050 (2012). [CrossRef] [PubMed]
  17. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  18. X. M. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express17(25), 22401–22416 (2009). [CrossRef] [PubMed]
  19. L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011). [CrossRef]
  20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010). [CrossRef]
  21. X. M. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010). [CrossRef]
  22. F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev.2(1–2), 58–73 (2008). [CrossRef]
  23. X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express17(10), 8506–8512 (2009). [CrossRef] [PubMed]
  24. D. Mao, X. Liu, L. Wang, H. Lu, and L. Duan, “Coexistence of unequal pulses in a normal dispersion fiber laser,” Opt. Express19(17), 16303–16308 (2011). [CrossRef] [PubMed]
  25. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett.33(1), 64–66 (2008). [CrossRef] [PubMed]
  26. C. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett.36(11), 2089–2091 (2011). [CrossRef] [PubMed]
  27. W. Hummers and R. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958). [CrossRef]
  28. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium4-styrenesulfonate),” J. Mater. Chem.16(2), 155–158 (2006). [CrossRef]
  29. C. Chen, Q. Yang, Y. Yang, W. Lv, Y. Wen, P. Hou, M. Wang, and H. Cheng, “Self-assembled free-standing graphite oxide membrane,” Adv. Mater.21(29), 3007–3011 (2009). [CrossRef]
  30. X. M. Liu, T. Wang, C. Shu, L. R. Wang, A. Lin, K. Q. Lu, T. Y. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys.18(11), 1357–1361 (2008). [CrossRef]
  31. X. M. Liu and D. Mao, “Compact all-fiber high-energy fiber laser with sub-300-fs duration,” Opt. Express18(9), 8847–8852 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited