OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18975–18982

Enhancement of thermal damage threshold of carbon-nanotube-based saturable absorber by evanescent-field interaction on fiber end

H. H. Liu, Y. Yang, and K. K. Chow  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18975-18982 (2013)
http://dx.doi.org/10.1364/OE.21.018975


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a scheme of fiber-connector-type carbon-nanotube-based saturable absorber (CNT-SA) with enhanced thermal damage threshold, in which the CNTs are deposited on the fiber connector end in a ring pattern for evanescent-field interaction instead of direct interaction. The thermal damage threshold of such CNT-SA is found to be increased by around 130% compared with an evenly deposited one. An all-fiber Fabry-Perot (FP) linear cavity passively mode-locked laser is further constructed incorporating the prepared CNT-SA, where the optical power is confined in a relatively short laser cavity to investigate the thermal damage threshold and the performance of the CNT-SA. Stable output pulses with a fundamental repetition rate of 211.84 MHz and a pulse width of 680 fs are generated from the fiber laser. The mode-locking operation can be maintained an intra-cavity average power of 30 mW, indicating that the CNT-SA can withstand a relatively high optical power without performance degradation.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 16, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 16, 2013
Published: August 1, 2013

Citation
H. H. Liu, Y. Yang, and K. K. Chow, "Enhancement of thermal damage threshold of carbon-nanotube-based saturable absorber by evanescent-field interaction on fiber end," Opt. Express 21, 18975-18982 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).
  2. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009).
  3. C. S. Jun, “J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express19(20), 19775–19780 (2011).
  4. Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, “Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes,” Opt. Lett.37(24), 5079–5081 (2012).
  5. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
  6. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).
  7. K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).
  8. B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).
  9. X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).
  10. S. Y. Ryu, K. S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express20(12), 12966–12974 (2012).
  11. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).
  12. H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).
  13. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
  14. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010).
  15. Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).
  16. H. J. Kim, H. J. Choi, S. M. Nam, and Y. W. Song, “High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition,” Opt. Express19(5), 4762–4767 (2011).
  17. T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,” Opt. Express20(21), 23659–23665 (2012).
  18. A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express21(4), 4665–4670 (2013).
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18(21), 1867–1869 (1993).
  20. K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express17(18), 15608–15613 (2009).
  21. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).
  22. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).
  23. J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).
  24. A. Martinez and S. Yamashita, “10GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101(4), 041118 (2012).
  25. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
  26. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited