OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18983–18993

Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD

Hanjun Luo, XiuHua Yuan, and Yanan Zeng  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18983-18993 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a combined system of heterodyne detection with laser pulse and photon counting based on Geiger-mode avalanche photodiode (GM-APD) that is designed to achieve the range of remote non-cooperative target. Based on the heterodyne principle and assuming that the creation of primary electrons in GM-APD is Poisson-distributed, the range accuracy model is established. The factors that influence the range accuracy, namely pulse width, echo intensity, local oscillator (LO) intensity, noise, echo position, and beat frequency, are discussed. The results show that these six factors have significant influence on the range accuracy when the echo intensity is extremely weak. In case that the primary electrons of the echo signal are beyond 4, the pulse width and echo intensity are the main influence factors. It is also shown that the stronger echo intensity, narrower pulse width, low noise, large echo position, and small beat frequency produce higher range accuracy in a pulsed photon heterodyne detection system based on GM-APD.

© 2013 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.2840) Detectors : Heterodyne
(280.5600) Remote sensing and sensors : Radar
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: March 25, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: July 25, 2013
Published: August 2, 2013

Hanjun Luo, XiuHua Yuan, and Yanan Zeng, "Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD," Opt. Express 21, 18983-18993 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt.45(16), 3798–3804 (2006). [CrossRef] [PubMed]
  2. F. Malota, “Pulsed CO2-laser heterodyne radar for simultaneous measurements of range and velocity,” Appl. Opt.23(19), 3395–3399 (1984). [CrossRef] [PubMed]
  3. P. Mercier, J. Bénier, P. A. Frugier, G. Contencin, J. Veaux, S. L. Basseuil, and M. Debruyne, “Heterodyne velocimetry and detonics experiments,” Proc. SPIE7126, 71261O (2008). [CrossRef]
  4. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).
  5. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res., Sect. A.567, 48–56 (2006).
  6. S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE5086, 359–368 (2003). [CrossRef]
  7. R. M. Marino and W. R. D. Jr, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J.15, 23–36 (2005).
  8. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt.41(36), 7671–7678 (2002). [CrossRef] [PubMed]
  9. D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. D. Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst.54(1), 4–12 (2007). [CrossRef]
  10. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express20(11), 11863–11881 (2012). [CrossRef] [PubMed]
  11. L. A. Jiang and J. X. Luu, “Heterodyne detection with a weak local oscillator,” Appl. Opt.47(10), 1486–1503 (2008). [CrossRef] [PubMed]
  12. L. Liu, H. Zhang, J. Guo, S. Zhao, and T. Wang, “Photon time-interval statistics applied to the analysis of laser heterodyne signal with photon counter,” Opt. Commun.285(18), 3820–3826 (2012). [CrossRef]
  13. F. Wang, Y. Zhao, Y. Zhang, and X. Sun, “Range accuracy limitation of pulse ranging systems based on Geiger mode single-photon detectors,” Appl. Opt.49(29), 5561–5566 (2010). [CrossRef] [PubMed]
  14. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun.283(2), 304–308 (2010). [CrossRef]
  15. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” J. Mod. Opt.26, 627–644 (1979).
  16. M. M. Abbas, M. J. Mumma, T. Kostiuk, and D. Buhl, “Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications,” Appl. Opt.15(2), 427–436 (1976). [CrossRef] [PubMed]
  17. M. C. Amann, T. B. M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001). [CrossRef]
  18. H. Ailisto, V. Heikkinen, R. Mitikka, R. Myllylä, J. Kostamovaara, A. Mäntyniemi, and M. Koskinen, “Scannerless imaging pulse-laser range finding,” J. Opt. A.4(6), S337–S346 (2002). [CrossRef]
  19. O. Steinvall and T. Chevalier, “Range accuracy and resolution for laser radars,” Proc. SPIE5988, 598808 (2005). [CrossRef]
  20. S. Der, B. Redman, and R. Chellappa, “Simulation of error in optical radar range measurements,” Appl. Opt.36(27), 6869–6874 (1997). [CrossRef] [PubMed]
  21. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng.45(3), 034301 (2006). [CrossRef]
  22. D. Fink, “Coherent detection signal-to-noise,” Appl. Opt.14(3), 689–690 (1975). [CrossRef] [PubMed]
  23. M. Salem and A. Dogariu, “Optical heterodyne detection of random electromagnetic beams,” J. Mod. Opt.51, 2305–2313 (2004).
  24. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE53(11), 1688–1700 (1965). [CrossRef]
  25. J. W. Goodman, Statistical Optics (Wiley, 1985), Chap. 9.
  26. M. Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Opt.44(24), 5140–5147 (2005). [CrossRef] [PubMed]
  27. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt.42(27), 5388–5398 (2003). [CrossRef] [PubMed]
  28. Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys.13(1), 1–18 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited