OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19003–19011

Optical frequency comb interference profilometry using compressive sensing

Quang Duc Pham and Yoshio Hayasaki  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19003-19011 (2013)
http://dx.doi.org/10.1364/OE.21.019003


View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object’s surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

© 2013 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(110.1758) Imaging systems : Computational imaging
(100.3175) Image processing : Interferometric imaging
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 1, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 19, 2013
Published: August 2, 2013

Citation
Quang Duc Pham and Yoshio Hayasaki, "Optical frequency comb interference profilometry using compressive sensing," Opt. Express 21, 19003-19011 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt.10(9), 2113–2118 (1971). [CrossRef] [PubMed]
  2. P. S. Lam, J. D. Gaskill, and J. C. Wyant, “Two-wavelength holographic interferometer,” Appl. Opt.23(18), 3079–3081 (1984). [CrossRef] [PubMed]
  3. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng.39(1), 79–85 (2000). [CrossRef]
  4. A. Wada, M. Kato, and Y. Ishii, “Multiple-wavelength digital holographic interferometry using tunable laser diodes,” Appl. Opt.47(12), 2053–2060 (2008). [CrossRef] [PubMed]
  5. K. N. Joo and S. W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett.32(6), 647–649 (2007). [CrossRef] [PubMed]
  6. K. Minoshima, K. Arai, and H. Inaba, “Two-Color Interferometry using frequency combs for high-accuracy self-correction of air refractive index,” Opt. Express19, 26095–26105 (2011). [CrossRef] [PubMed]
  7. C. E. Towers, D. P. Towers, D. T. Reid, W. N. MacPherson, R. R. J. Maier, and J. D. C. Jones, “Fiber interferometer for simultaneous multiwavelength phase measurement with a broadband femtosecond laser,” Opt. Lett.29(23), 2722–2724 (2004). [CrossRef] [PubMed]
  8. J. S. Oh and S.-W. Kim, “Femtosecond laser pulses for surface-profile metrology,” Opt. Lett.30(19), 2650–2652 (2005). [CrossRef] [PubMed]
  9. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express20(7), 7237–7242 (2012). [CrossRef] [PubMed]
  10. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006). [CrossRef] [PubMed]
  11. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  12. M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett.35(24), 4202–4204 (2010). [CrossRef] [PubMed]
  13. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express19(7), 6549–6562 (2011). [CrossRef] [PubMed]
  14. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett.29(10), 1153–1155 (2004). [CrossRef] [PubMed]
  15. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010). [CrossRef]
  16. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt.47(14), 2715–2720 (2008). [CrossRef] [PubMed]
  17. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express17(20), 17324–17337 (2009). [CrossRef] [PubMed]
  18. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt.39(30), 5512–5517 (2000). [CrossRef] [PubMed]
  19. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006). [CrossRef]
  20. E. J. Candès and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory52(12), 5406–5425 (2006). [CrossRef]
  21. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag.25(2), 83–91 (2008). [CrossRef]
  22. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A Single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008). [CrossRef]
  23. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  24. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt.49(19), E67–E82 (2010). [CrossRef] [PubMed]
  25. R. Berinde, P. Indyk, and M. Ruzic, “Practical near-optimal sparse recovery in the L1 norm,” Communication, Control, and Computing, 2008 46th Annual Allerton Conference, 198–205, 23–26 Sept. (2008). [CrossRef]
  26. E. J. Candès and J. Romberg, “Signal recovery from random projections,” in Computational Imaging III, Proc. SPIE Conf. 5674, 76–86, 31 March. (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited