OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19022–19028

InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure

Kengo Nozaki, Shinji Matsuo, Koji Takeda, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19022-19028 (2013)
http://dx.doi.org/10.1364/OE.21.019022


View Full Text Article

Enhanced HTML    Acrobat PDF (1930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrasmall InGaAs photodetectors based on a photonic crystal waveguide with a buried heterostructure (BH) were demonstrated for the first time. A sufficiently high DC responsivity of ~1 A/W was achieved for the 3.4-μm-long detector. The dynamic response revealed a 3-dB bandwidth of 6 GHz and a 10-Gb/s eye pattern. These results were thanks to the strong confinement of both photons and carriers in a small BH and will pave the way for unprecedented nano-photodetectors with a high quantum efficiency and small capacitance. Our device potentially has an ultrasmall junction capacitance of much less than 1 fF and may enable us to eliminate electrical amplifiers for future optical receivers and subsequent ultralow-power optical links on a chip.

© 2013 OSA

OCIS Codes
(230.5160) Optical devices : Photodetectors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Detectors

History
Original Manuscript: June 5, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 28, 2013
Published: August 2, 2013

Citation
Kengo Nozaki, Shinji Matsuo, Koji Takeda, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi, "InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure," Opt. Express 21, 19022-19028 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011). [CrossRef]
  2. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011). [CrossRef] [PubMed]
  3. S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated Optical Receivers for On-Chip Interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010). [CrossRef]
  4. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  5. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express20(4), 3773–3780 (2012). [CrossRef] [PubMed]
  6. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  7. K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches” OFC/NFOEC, Anaheim, OM2J.5 (2013) [CrossRef]
  8. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008). [CrossRef]
  9. A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011). [CrossRef]
  10. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96(10), 101103 (2010). [CrossRef]
  11. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010). [CrossRef]
  12. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7(7), 569–575 (2013). [CrossRef]
  13. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012). [CrossRef]
  14. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  15. Z. Sheng, L. Liu, J. Brouckaert, S. L. He, and D. Van Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express18(2), 1756–1761 (2010). [CrossRef] [PubMed]
  16. H. Yang, C. L. L. M. Daunt, F. Gity, K. H. Lee, W. Han, B. Corbett, and F. H. Peters, “Zero-Bias High-Speed Edge-Coupled Unitraveling-Carrier InGaAs Photodiode,” IEEE Photon. Technol. Lett.22(23), 1747–1749 (2010). [CrossRef]
  17. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “10-Gbit/s direct modulation of electrically driven photonic crystal nanocavity laser”in Proceedings of National Fiber Optic Engineers Conference, Los Angeles, CA, March 4-8, 2012, PDP5A.
  18. S. Adachi, “Optical Dispersion Relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989). [CrossRef]
  19. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited