OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19029–19039

Silicon photonic slot waveguide Bragg gratings and resonators

Xu Wang, Samantha Grist, Jonas Flueckiger, Nicolas A. F. Jaeger, and Lukas Chrostowski  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19029-19039 (2013)
http://dx.doi.org/10.1364/OE.21.019029


View Full Text Article

Enhanced HTML    Acrobat PDF (4176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and characterization of integrated Bragg gratings in silicon-on-insulator slot waveguides. The Bragg gratings are formed with sidewall corrugations, either on the inside or on the outside of the waveguide. We demonstrate resonators implemented using phase-shifted Bragg gratings in slot waveguides, showing quality factors up to 3 × 104. Due to the strong optical confinement in the slot, these devices are promising for optical sensing applications. The devices were fabricated using a CMOS-compatible process, facilitating high-volume and low-cost production.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: June 6, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 26, 2013
Published: August 2, 2013

Citation
Xu Wang, Samantha Grist, Jonas Flueckiger, Nicolas A. F. Jaeger, and Lukas Chrostowski, "Silicon photonic slot waveguide Bragg gratings and resonators," Opt. Express 21, 19029-19039 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol.19, 1938–1942 (2001). [CrossRef]
  2. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B20, 2753–2757 (2002). [CrossRef]
  3. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33, 3013–3015 (2008). [CrossRef] [PubMed]
  4. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett.34, 1357–1359 (2009). [CrossRef] [PubMed]
  5. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett.35, 3477–3479 (2010). [CrossRef] [PubMed]
  6. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett.23, 290–292 (2011).
  7. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011). [CrossRef] [PubMed]
  8. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012). [CrossRef] [PubMed]
  9. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013). [CrossRef] [PubMed]
  10. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chros-towski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013). [CrossRef] [PubMed]
  11. A. S. Jugessur, M. Yagnyukova, J. Dou, and J. S. Aitchison, “Bragg-grating air-slot optical waveguide for label-free sensing,” Proc. SPIE8231, 82310N (2012). [CrossRef]
  12. A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng.86, 1488–1490 (2009). [CrossRef]
  13. S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE8629, 862909 (2013). [CrossRef]
  14. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE8236, 823620 (2012). [CrossRef]
  15. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15, 7610–7615 (2007). [CrossRef] [PubMed]
  16. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophoton. (2013). [CrossRef]
  17. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  18. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32, 3080–3082 (2007). [CrossRef] [PubMed]
  19. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J.1, 197–204 (2009). [CrossRef]
  20. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology – a platform for practical nonlinear optics,” Proc. IEEE97, 1304–1316 (2009). [CrossRef]
  21. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol.27, 4076–4083 (2009). [CrossRef]
  22. K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J.4, 779–788 (2012). [CrossRef]
  23. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100, 121118 (2012). [CrossRef]
  24. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–9 (2011).
  25. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. A. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” in IEEE Conference on Group IV Photonics (GFP), San Diego, CA, 2012, paper ThP 17 (2012).
  26. H.-C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol.25, 1147–1151 (2007). [CrossRef]
  27. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express17, 15330–15341 (2009). [CrossRef] [PubMed]
  28. X. Wang, W. Shi, S. Grist, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in IEEE Photon. Conf. pp. 869–870 (2011).
  29. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3, 422–432 (2011). [CrossRef]
  30. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett.86, 081101 (2005). [CrossRef]
  31. H. Zhang, J. Zhang, S. Chen, J. Song, J. Kee, M. Yu, and G.-Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett.24, 10–12 (2012). [CrossRef]
  32. A. Saynatjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express19, 26275–26282 (2011). [CrossRef]
  33. J. Blasco and C. Barrios, “Compact slot-waveguide/channel-waveguide mode-converter,” in Conference on Lasers and Electro-Optics Europe (CLEO/Europe). p. 607 (2005).
  34. R. Palmer, L. Alloatti, D. Korn, W. Heni, P. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold, “Low-loss silicon strip-to-slot mode converters,” IEEE Photon. J.5, 2200409 (2013). [CrossRef]
  35. E. Leckel, J. Sang, E. U. Wagemann, and E. Mueller, “Impact of source spontaneous emission (SSE) on the measurement of DWDM components,” in Optical Fiber Communication Conference, paper WB4 (2000).
  36. R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express18, 25061–25067 (2010). [CrossRef] [PubMed]
  37. A. Spott, T. Baehr-Jones, R. Ding, Y. Liu, R. Bojko, T. O’Malley, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Photolithographically fabricated low-loss asymmetric silicon slot waveguides,” Opt. Express19, 10950–10958 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited