OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19047–19060

Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19047-19060 (2013)
http://dx.doi.org/10.1364/OE.21.019047


View Full Text Article

Acrobat PDF (1117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative fluctuations between the squeezed quadrature angle and the measured quadrature (sometimes called squeezing angle jitter or phase noise) are one limit to the noise reduction that can be achieved. We present calculations of several effects that lead to quadrature fluctuations, and use these estimates to account for the observed quadrature fluctuations in a LIGO gravitational wave detector. We discuss the implications of this work for quantum enhanced advanced detectors and even more sensitive third generation detectors.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.6570) Quantum optics : Squeezed states
(350.1270) Other areas of optics : Astronomy and astrophysics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 11, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 26, 2013
Published: August 2, 2013

Citation
S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, "Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light," Opt. Express 21, 19047-19060 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19047


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. The LIGO Scientific Collaboration, , “LIGO: The laser interferometer gravitational-wave observatory,” Rep. Prog. Phys.72, 076901 (2009).
  2. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D23, 1693 (1981). [CrossRef]
  3. R. Schnabel, N. Mavalvala, D.E. McClelland, and P.K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121. (2010). [CrossRef] [PubMed]
  4. D.E. McClelland, N. Mavalvala, Y. Chen, and R. Schnabel, “Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors,” Laser and Photonics Rev.5, 677–696 (2011).
  5. LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. doi:(2013). [CrossRef]
  6. LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Phys.7(12) 962–965 (2011).
  7. H Grote, K Danzmann, K Dooley, R Schnabel, J Slutzky, and H Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett.110, 181101 (2013). [CrossRef]
  8. K. Wódkiewicz and M. S. Zubairy, “Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier,” Phys. Rev. A27, 2003–2007 (1983). [CrossRef]
  9. D. D. Crouch and S. L. Braunstein, “Limitations to squeezing in a parametric amplifier due to pump quantum fluctuations,” Phys. Rev. A38, 4696–4711 (1988). [CrossRef] [PubMed]
  10. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from a below threshold optical parametric oscillator,” J. Opt. B: Quantum S. O.1, 469–474 (1999). [CrossRef]
  11. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quant. Grav.29, 145015–145029. (2012). [CrossRef]
  12. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehment, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104, 25, 251102 (2010). [CrossRef] [PubMed]
  13. T. Aoki, G. Takahashi, and A. Furasawa, “Squeezing at 946 nm with periodically poled KTiOPO4,” Opt. Express14(15), 6930–6935 (2006). [CrossRef] [PubMed]
  14. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express15, 4321–4327 (2007). [CrossRef] [PubMed]
  15. A. Franzen, B. Hage, J. DiGuglielmo, J. Fiurásek, and R. Schnabel, “Experimental demonstration of continuous variable purification of squeezed states,” Phys. Rev. Lett.97, 150505 (2006). [CrossRef] [PubMed]
  16. S. S. Y. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. M. S. Schofield, V. V. Frolov, K. Kawabe, M. Evans, G. D. Meadors, M. Factourovich, R. Gustafson, C. Vorvick, M. Landry, A. Khalaidovski, M. S. Stefszky, C. M. Mow-Lowry, B. C. Buchler, D. A. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, are preparing a manuscript to be called “Impact of backscattered-light in a squeezing-enhanced interferometric gravitational-wave detector,”
  17. T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in Enhanced LIGO,” Class. and Quant. Grav.29, 065005 (2012). [CrossRef]
  18. S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett.36(23) 4680–4682 (2011). [CrossRef] [PubMed]
  19. S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A75, 043814 (2007). [CrossRef]
  20. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett.97, 011101 (2006). [CrossRef] [PubMed]
  21. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004). [CrossRef] [PubMed]
  22. K. McKenzie, “Squeezing in the audio gravitational wave detection band,” Ph.D. thesis, Australian National University (2008).
  23. J. Gea-Banacloche and M. S. Zubairy, “Influence of pump-phase fluctuations on the squeezing in a degenerate parametric oscillator,” Phys. Rev. A42, 1742–1751 (1990). [CrossRef] [PubMed]
  24. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A30, 1386–1391 (1984). [CrossRef]
  25. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985). [CrossRef] [PubMed]
  26. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express14, 11256–11264 (2006). [CrossRef] [PubMed]
  27. A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Class. and Quant. Grav.29, 075001 (2012). [CrossRef]
  28. K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A72, 043819 (2005). [CrossRef]
  29. G. M. Harry, (for the LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quant. Grav.27, 084006 (2010). [CrossRef]
  30. A Khalaidovski, “Beyond the quantum limit: A squeezed light laser in GEO600,” Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover (2011).
  31. Einstein gravitational wave telescope conceptual design study. https://tds.ego-gw.it/ql/?c=7954
  32. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B: Quantum S. O.7, S421 (2005). [CrossRef]
  33. C. M. Caves and B. L. Schumaker, “New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states,” Phys. Rev. A31, 3068–3092 (1985). [CrossRef] [PubMed]
  34. B. Buchler, “Electro-optic control of quantum measurements,” Ph.D. thesis, Australian National University (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited