OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19082–19090

A Broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure

Ming Yin, Xiao Yong Tian, Ling Ling Wu, and Di Chen Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19082-19090 (2013)
http://dx.doi.org/10.1364/OE.21.019082


View Full Text Article

Enhanced HTML    Acrobat PDF (3934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the first realized three-dimensional (3D) practical implementation of the so called “optical black hole” in microwave frequencies, an electromagnetic (EM) concentrator. The 3D EM wave concentrator was designed with non-resonant gradient index (GRIN) 3D woodpile photonic crystals (PCs) structure in metamaterial regime, and fabricated by Stereolithography (SL) process. Omnidirectional EM wave capture and absorbing ability of the device in a broad bandwidth (12GHz-15GHz) were validated by full-wave simulation and experiments. Such devices may have applications in microwave energy harvesting and radiation detector.

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: June 18, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 25, 2013
Published: August 2, 2013

Citation
Ming Yin, Xiao Yong Tian, Ling Ling Wu, and Di Chen Li, "A Broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure," Opt. Express 21, 19082-19090 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19082


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  5. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett.38(10), 1606 (2013). [CrossRef]
  6. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007). [CrossRef]
  7. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009). [CrossRef] [PubMed]
  8. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006). [CrossRef]
  9. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007). [CrossRef] [PubMed]
  10. M. Li, R. X. Miao, and Y. Pang, “More studies on metamaterials mimicking de Sitter space,” Opt. Express18(9), 9026–9033 (2010). [CrossRef] [PubMed]
  11. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  12. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009). [CrossRef]
  13. H. Y. Chen, R. X. Miao, and M. A. Li, “Transformation optics that mimics the system outside a Schwarzschild black hole,” Opt. Express18(14), 15183–15188 (2010). [CrossRef] [PubMed]
  14. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express18(16), 16646–16662 (2010). [CrossRef] [PubMed]
  15. S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010). [CrossRef]
  17. W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010). [CrossRef]
  18. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010). [CrossRef]
  19. J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011). [CrossRef]
  20. Y. R. Yang, L. Y. Leng, N. Wang, Y. G. Ma, and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials,” J. Opt. Soc. Am. A29(4), 473–475 (2012). [CrossRef] [PubMed]
  21. R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011). [CrossRef]
  22. A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012). [CrossRef]
  23. Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012). [CrossRef]
  24. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  25. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010). [CrossRef] [PubMed]
  26. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002). [CrossRef]
  27. D. W. Prather, “Photonic crystals: theory, applications, and fabrication”,(Wiley, Hoboken, N.J., 2009).
  28. Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010). [CrossRef] [PubMed]
  29. Z. Liang and J. Li, “Scaling two-dimensional photonic crystals for transformation optics,” Opt. Express19(18), 16821–16829 (2011). [CrossRef] [PubMed]
  30. H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express14(26), 12944–12949 (2006). [CrossRef] [PubMed]
  31. L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013). [CrossRef]
  32. B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited