OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19091–19096

Trapping of light in solitonic cavities and its role in the supercontinuum generation

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19091-19096 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates cavities formed by a pair of solitary waves with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral domain, the two solitons receive blue and red wavelength shifts, and the spectrum of the trapped light alters as well. This phenomenon strongly affects spectral characteristics of the generated supercontinuum. Consideration of the system's parameters which affect the creation of the cavity reveals possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light.

© 2013 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: June 25, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 25, 2013
Published: August 2, 2013

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, "Trapping of light in solitonic cavities and its role in the supercontinuum generation," Opt. Express 21, 19091-19096 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys.55, 284–306 (1974). [CrossRef]
  2. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett.23, 510–524 (1987).
  3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett.88(17), 173901 (2002). [CrossRef] [PubMed]
  4. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature424(6948), 511–515 (2003). [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  6. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express14(20), 9391–9407 (2006). [CrossRef] [PubMed]
  7. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  8. D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82(2), 1287–1299 (2010). [CrossRef]
  9. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett.34(14), 2132–2134 (2009). [CrossRef] [PubMed]
  10. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express18(16), 16733–16738 (2010). [CrossRef] [PubMed]
  11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A87(6), 063808 (2013). [CrossRef]
  12. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986). [CrossRef] [PubMed]
  13. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express18(25), 25993–25998 (2010). [CrossRef] [PubMed]
  14. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004). [CrossRef] [PubMed]
  15. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016619 (2005). [CrossRef] [PubMed]
  16. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express12(26), 6498–6507 (2004). [CrossRef] [PubMed]
  17. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett.95(21), 213902 (2005). [CrossRef] [PubMed]
  18. A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, “Phase-sensitive scattering of a continuous wave on a soliton,” Opt. Lett.31(11), 1624–1626 (2006). [CrossRef] [PubMed]
  19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  20. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express15(4), 1653–1662 (2007). [CrossRef] [PubMed]
  21. B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7928–7933 (1998). [CrossRef]
  22. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A44(10), 6954–6957 (1991). [CrossRef] [PubMed]
  23. R. Driben and I. V. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett.37(24), 5157–5159 (2012). [CrossRef] [PubMed]
  24. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett.106(16), 163901 (2011). [CrossRef] [PubMed]
  25. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci Rep2, 850 (2012). [CrossRef] [PubMed]
  26. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express21(12), 14481–14486 (2013). [CrossRef] [PubMed]
  27. D. Faccio, T. Arane, M. Lamperti, and U. Leonhardt, “Optical black hole lasers,” Class. Quantum Gravity29(22), 224009 (2012). [CrossRef]
  28. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B28, A11–A26 (2011). [CrossRef]
  29. R. Driben and B. A. Malomed, “Suppression of crosstalk between solitons in a multi-channel split-step system,” Opt. Commun.197, 481–489 (2001).
  30. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A11, 963–983 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited