OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19113–19127

Engineered surface waves in hyperbolic metamaterials

Carlos J. Zapata-Rodríguez, Juan J. Miret, Slobodan Vuković, and Milivoj R. Belić  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19113-19127 (2013)
http://dx.doi.org/10.1364/OE.21.019113


View Full Text Article

Enhanced HTML    Acrobat PDF (1758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.

© 2013 OSA

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 5, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: June 14, 2013
Published: August 5, 2013

Citation
Carlos J. Zapata-Rodríguez, Juan J. Miret, Slobodan Vuković, and Milivoj R. Belić, "Engineered surface waves in hyperbolic metamaterials," Opt. Express 21, 19113-19127 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007). [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007). [CrossRef]
  3. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006). [CrossRef]
  4. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007). [CrossRef]
  5. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011). [CrossRef]
  6. M. Conforti, M. Guasoni, and C. D. Angelis, “Subwavelength diffraction management,” Opt. Lett.33, 2662–2664 (2008). [PubMed]
  7. C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012). [CrossRef]
  8. Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008). [CrossRef]
  9. C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013). [CrossRef]
  10. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP67, 714–716 (1988).
  11. O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008). [CrossRef]
  12. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009). [CrossRef] [PubMed]
  13. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces,” J. Opt. Soc. Am. A15, 248–260 (1998). [CrossRef]
  14. M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010). [CrossRef]
  15. J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009). [CrossRef]
  16. J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010). [CrossRef]
  17. O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012). [CrossRef] [PubMed]
  18. S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012). [CrossRef]
  19. J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012). [CrossRef]
  20. S. M. Rytov, “Electromagnetic properties of layered media,” Sov. Phys. JETP2, 466 (1956).
  21. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am.67, 438–448 (1977). [CrossRef]
  22. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009). [CrossRef]
  23. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  24. I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012). [CrossRef]
  25. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012). [CrossRef]
  26. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007). [CrossRef] [PubMed]
  27. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  28. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006). [CrossRef]
  29. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  30. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007). [CrossRef]
  31. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011). [CrossRef]
  32. A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express21, 1593–1598 (2013). [CrossRef] [PubMed]
  33. E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  34. E. Popov and S. Enoch, “Mystery of the double limit in homogenization of finitely or perfectly conducting periodic structures,” Opt. Lett.32, 3441–3443 (2007). [CrossRef] [PubMed]
  35. A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011). [CrossRef]
  36. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010). [CrossRef]
  37. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited