OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19135–19141

Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective

Benjamin. P. Cumming, Sukanta Debbarma, Barry Luther-Davis, and Min Gu  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19135-19141 (2013)
http://dx.doi.org/10.1364/OE.21.019135


View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the challenges in laser direct writing with a high numerical-aperture objective is the severe axial focal elongation and the pronounced effect of the refractive-index mismatch aberration. We present the simultaneous compensation for the refractive-index mismatch aberration and the focal elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. By the use of circularly polarized beam illumination and a spatial light modulator, a complex and dynamic slit pupil aperture can be produced to engineer the focal spot. Such a beam shaping method can result in circularly symmetric fabrication along the lateral directions as well as the dynamic compensation for the refractive-index mismatch aberration even when the laser beam is focused into the material of a refractive index up to 2.35.

© 2013 OSA

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.4241) Optical design and fabrication : Nanostructure fabrication
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 10, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: July 22, 2013
Published: August 5, 2013

Citation
Benjamin. P. Cumming, Sukanta Debbarma, Barry Luther-Davis, and Min Gu, "Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective," Opt. Express 21, 19135-19141 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indexes–an integral-representation,” J. Opt. Soc. Am. A12, 325–332 (1995). [CrossRef]
  2. M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000). [CrossRef]
  3. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett.36, 67–69 (2011). [CrossRef] [PubMed]
  4. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011). [CrossRef]
  5. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006). [CrossRef]
  6. K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17, 8685–8695 (2009). [CrossRef] [PubMed]
  7. F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011). [CrossRef]
  8. M. Martinez–Corral, C. Ibáñez-López, G. Saavedra, and M. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express11, 1740–1745 (2003). [CrossRef]
  9. H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett.36, 2471–2473 (2011). [CrossRef] [PubMed]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20, 1559–1567 (2003). [CrossRef]
  11. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003). [CrossRef] [PubMed]
  12. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005). [CrossRef] [PubMed]
  13. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012). [CrossRef] [PubMed]
  14. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16, 5481–5492 (2008). [CrossRef] [PubMed]
  15. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express18, 656–661 (2010). [CrossRef] [PubMed]
  16. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express19, 24122–24128 (2011). [CrossRef] [PubMed]
  17. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011). [CrossRef] [PubMed]
  18. B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012). [CrossRef]
  19. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited