OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19153–19162

Decoding the structure of granular and porous materials from speckled phase contrast X-ray images

R. P. Carnibella, M. J. Kitchen, and A. Fouras  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19153-19162 (2013)
http://dx.doi.org/10.1364/OE.21.019153


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging techniques for studying the structure of opaque, granular and porous materials are limited by temporal resolution and radiation dose. We present a technique for characterising the structure of such materials by decoding three dimensional structural information from single, propagation based phase contrast X-ray images. We demonstrate the technique by measuring the distribution of diameters of glass microspheres in packed samples. We also present synthetic data, which shows that our inverse method is stable and that accuracy is improved by phase contrast X-ray imaging. Compared to computed tomography, our technique has superior temporal resolution and lower radiation dose.

© 2013 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.7440) Imaging systems : X-ray imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.4990) Other areas of optics : Particles

ToC Category:
Image Processing

History
Original Manuscript: June 7, 2013
Revised Manuscript: July 8, 2013
Manuscript Accepted: July 22, 2013
Published: August 5, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
R. P. Carnibella, M. J. Kitchen, and A. Fouras, "Decoding the structure of granular and porous materials from speckled phase contrast X-ray images," Opt. Express 21, 19153-19162 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Schmidt and M. L. Corradini, “The internal flow of diesel fuel injector nozzles: A review,” Int. J. Engine Res.2(1), 1–22 (2001). [CrossRef]
  2. F. J. Leij, T. A. Ghezzehei, and D. Or, “Modeling the dynamics of the soil pore-size distribution,” Soil Tillage Res.64(1-2), 61–78 (2002). [CrossRef]
  3. D. E. Carney, C. E. Bredenberg, H. J. Schiller, A. L. Picone, U. G. McCann, L. A. Gatto, G. Bailey, M. Fillinger, and G. F. Nieman, “The mechanism of lung volume change during mechanical ventilation,” Am. J. Resp. Crit. Care160(5), 1697–1702 (1999). [CrossRef]
  4. A. J. Hajari, D. A. Yablonskiy, A. L. Sukstanskii, J. D. Quirk, M. S. Conradi, and J. C. Woods, “Morphometric changes in the human pulmonary acinus during inflation,” J. Appl. Physiol.112(6), 937–943 (2012). [CrossRef] [PubMed]
  5. R. R. Mercer, M. L. Russell, and J. D. Crapo, “Alveolar septal structure in different species,” J. Appl. Physiol.77(3), 1060–1066 (1994). [PubMed]
  6. J. Knust, M. Ochs, H. J. G. Gundersen, and J. R. Nyengaard, “Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs,” Anat. Rec. (Hoboken)292(1), 113–122 (2009). [CrossRef] [PubMed]
  7. A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng.40(5), 1160–1169 (2012). [CrossRef] [PubMed]
  8. C. N. Davies, Aerosol Science (Academic Press, 1966).
  9. C. E. Mandt, Y. Kuga, L. Tsang, and A. Ishimaru, “Microwave propagation and scattering in a dense distribution of non-tenuous spheres: experiment and theory,” Waves Random Media2(3), 225–234 (1992). [CrossRef]
  10. J. R. Fletcher, G. P. Swift, D. C. Dai, J. A. Levitt, and J. M. Chamberlain, “Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation,” J. Appl. Phys.101(1), 013102 (2007). [CrossRef]
  11. C. M. Sayers and R. L. Smith, “The propagation of ultrasound in porous media,” Ultrasonics20(5), 201–205 (1982). [CrossRef]
  12. The ImPACT Group, Comparative Specifications: 128 to 320 Slice CT Scanner Technical Specifications (Centre for Evidence-based Purchasing, 2009).
  13. R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett.90(14), 144104 (2007). [CrossRef]
  14. M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-ray phase nanotomography resolves the 3D human bone ultrastructure,” PLoS ONE7(8), e35691 (2012). [CrossRef] [PubMed]
  15. R. Mokso, F. Marone, D. Haberthür, J. C. Schittny, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Following dynamic processes by X‐ray tomographic microscopy with sub‐second temporal resolution,” in AIP Conference Proceedings (2011), Vol. 1365, pp. 38–41.
  16. J. Moosmann, A. Ershov, V. Altapova, T. Baumbach, M. S. Prasad, C. LaBonne, X. Xiao, J. Kashef, and R. Hofmann, “X-ray phase-contrast in vivo microtomography probes new aspects of Xenopus gastrulation,” Nature497(7449), 374–377 (2013). [CrossRef] [PubMed]
  17. S. Fain, M. L. Schiebler, D. G. McCormack, and G. Parraga, “Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications,” J. Magn. Reson. Imaging32(6), 1398–1408 (2010). [CrossRef] [PubMed]
  18. O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic Press, 1982).
  19. U. Bonse and M. Hart, “Small angle X-ray scattering by spherical particles of polystyrene and polyvinyltoluene,” Z. Phys.189(2), 151–162 (1966). [CrossRef]
  20. R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bosecke, and M. Giglio, “X-ray-scattering information obtained from near-field speckle,” Nat. Phys.4(3), 238–243 (2008). [CrossRef]
  21. R. P. Carnibella, M. J. Kitchen, and A. Fouras, “Determining particle size distributions from a single projection image,” Opt. Express20(14), 15962–15968 (2012). [CrossRef] [PubMed]
  22. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992).
  23. L. Randy, Haupt, Practical Genetic Algorithms, 2nd ed. (Wiley Interscience, 2004).
  24. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  25. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  26. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol.49(18), 4335–4348 (2004). [CrossRef] [PubMed]
  27. S. Torquato, T. M. Truskett, and P. G. Debenedetti, “Is random close packing of spheres well defined?” Phys. Rev. Lett.84(10), 2064–2067 (2000). [CrossRef] [PubMed]
  28. S. B. Yuste and A. Santos, “Radial distribution function for hard spheres,” Phys. Rev. A43(10), 5418–5423 (1991). [CrossRef] [PubMed]
  29. C. James, Spall, “Stochastic optimization,” in Handbook of Computational Statistics: Concepts and Methods, Wolfgang Härdle, James E. Gentle, and Yuichi Mori, eds. (Springer, 2004), pp. 169–197.
  30. V. Alan, Oppenheim, Discrete-time Signal Processing, 2nd ed. (Prentice Hall, 1999).
  31. A. W. Klein, R. F. Becker, and M. R. Bryson, “A method for estimating the distribution of alveolar sizes from histological lung sections,” Trans. Am. Microsc. Soc.91(2), 195–208 (1972). [CrossRef] [PubMed]
  32. L. Knudsen, E. R. Weibel, H. J. G. Gundersen, F. V. Weinstein, and M. Ochs, “Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach,” J. Appl. Physiol.108(2), 412–421 (2010). [CrossRef] [PubMed]
  33. C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, “Models, algorithms and validation for opensource DEM and CFD–DEM,” Prog. Comput. Fluid Dy.12, 140–152 (2012).
  34. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.68(7), 2774–2782 (1997). [CrossRef]
  35. M. Nieto-Vesperinas, Scattering And Diffraction in Physical Optics, 2nd ed. (World Scientific, 2006).
  36. L. Eshelman and J. Schaffer, “Real-coded genetic algorithms and interval-schemata.,” in Foundations of Genetic Algorithms, D. Whitley, ed. (Morgan Kaufmann., 1993), pp. 187–202.
  37. S. Goto, K. Takeshita, Y. Suzuki, H. Ohashi, Y. Asano, H. Kimura, T. Matsushita, N. Yagi, M. Isshiki, H. Yamazaki, Y. Yoneda, K. Umetani, and T. Ishikawa, “Construction and commissioning of a 215-m-long beamline at SPring-8,” Nucl. Instrum. Meth. A467–468, 682–685 (2001). [CrossRef]
  38. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon Cross Sections Database,” http://www.nist.gov/pml/data/xcom.index.cfm .
  39. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol.53(21), 6065–6077 (2008). [CrossRef] [PubMed]
  40. R. A. Jamison, J. A. Armitage, J. Carberry, M. J. Kitchen, S. B. Hooper, and A. Fouras, “Functional imaging to understand biomechanics: a critical tool for the study of biology, pathology and the development of pharmacological solutions,” Curr. Pharm. Biotechnol.13(11), 2128–2140 (2012). [CrossRef] [PubMed]
  41. J. Thurgood, S. Hooper, M. Siew, M. Wallace, S. Dubsky, M. Kitchen, R. A. Jamison, R. Carnibella, and A. Fouras, “Functional lung imaging during HFV in preterm rabbits,” PLoS ONE7(10), e48122 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited