OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19180–19186

Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power

Borislav Hinkov, Mattias Beck, Emilio Gini, and Jérôme Faist  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19180-19186 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design and realization of short-wavelength (λ = 4.53 μm) and buried-heterostructure quantum cascade lasers in a master oscillator power amplifier configuration. Watt-level, singlemode peak optical output power is demonstrated for typical non-tapered 4 μm wide and 5.25 mm long devices. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 25° and 27° in and perpendicular to growth direction, respectively. We demonstrate singlemode tuning over a range of 7.9 cm−1 for temperatures between 263K and 313K and also singlemode emission for different driving currents. The side mode suppression ratio is measured to be higher than 20 dB.

© 2013 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 17, 2013
Revised Manuscript: July 16, 2013
Manuscript Accepted: July 19, 2013
Published: August 5, 2013

Borislav Hinkov, Mattias Beck, Emilio Gini, and Jérôme Faist, "Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power," Opt. Express 21, 19180-19186 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997). [CrossRef]
  2. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006). [CrossRef]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011). [CrossRef]
  4. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012). [CrossRef]
  5. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett.28, 16–18 (2003). [CrossRef] [PubMed]
  6. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt.43, 3329–3334 (2004). [CrossRef] [PubMed]
  7. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002). [CrossRef]
  8. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012). [CrossRef]
  9. J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013). [CrossRef]
  10. P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).
  11. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009). [CrossRef]
  12. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012). [CrossRef] [PubMed]
  13. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012). [CrossRef]
  14. J. Faist, Quantum Cascade Lasers (Oxford University, 2013) [CrossRef]
  15. A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).
  16. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013). [CrossRef] [PubMed]
  17. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008). [CrossRef]
  18. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002). [CrossRef]
  19. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20, 3890–3897 (2012). [CrossRef] [PubMed]
  20. A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012). [CrossRef]
  21. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010). [CrossRef]
  22. J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012). [CrossRef]
  23. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008). [CrossRef]
  24. E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited