OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19202–19208

Performance comparison between electrical copper-based and optical fiber-based backplanes

Anna Boletti, Daniela Giacomuzzi, Giorgio Parladori, Pierpaolo Boffi, Maddalena Ferrario, and Mario Martinelli  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19202-19208 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A performance comparison between the electrical Cu-based backplane and a full-optical fiber-based backplane is presented in terms of capacity and power consumption. By means of systematic simulations we find the electrical configuration, which allows to optimize the Cu-based backplane by exploiting the best technologies available today. On the other hand, a fiber-based optical backplane is proposed by exploiting the most performing VCSEL sources. Limitations of the electrical and optical approaches are discussed, considering their capabilities to support up to about 25-Gb/s transmission and the possibility to evolve towards higher bit-rates.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(200.4650) Optics in computing : Optical interconnects
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 16, 2013
Revised Manuscript: June 22, 2013
Manuscript Accepted: June 22, 2013
Published: August 6, 2013

Anna Boletti, Daniela Giacomuzzi, Giorgio Parladori, Pierpaolo Boffi, Maddalena Ferrario, and Mario Martinelli, "Performance comparison between electrical copper-based and optical fiber-based backplanes," Opt. Express 21, 19202-19208 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kipp, “The Limit of Switch Bandwidth,” Proc. OFC 2011, Los Angeles, CA, paper OMV1 (2011). [CrossRef]
  2. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” J. Lightwave Technol.30(4), 448–457 (2012). [CrossRef]
  3. N. Fehratovic and S. Aleksic, “Power Consumption and Scalability of Optically Switched Interconnects for High-Capacity Network Elements,” Proc. OFC 2011, Los Angeles, CA, paper JWA84 (2001).
  4. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link,” Proc. IEEE Photonics Conference (IPC 2012), paper PD1.5 (2012). [CrossRef]
  5. P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012). [CrossRef]
  6. http://researcher.watson.ibm.com/researcher/files/ussasha/OFC_2012_OTh1E1_40G_SiGe_Link_Rylyakov_v5.pdf
  7. N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012). [CrossRef]
  8. C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006). [CrossRef]
  9. http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
  10. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012). [CrossRef]
  11. W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012). [CrossRef]
  12. N. N. Ledentsov, J. A. Lott, P. Wolf, P. Moser, J. R. Kropp, and D. Bimberg, “High Speed VCSELs for Energy-Efficient Data Transmission,” Proc. ISLC 2012, paper WB1 (2012). [CrossRef]
  13. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012). [CrossRef]
  14. S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009). [CrossRef]
  15. B. Offrein, “Silicon Photonics packaging requirements,” in Proc, IBM Silicon Photon. Workshop, Munich, Germany, 1–14 (2011). http://www.siliconphotonics.eu/munich_slides/2_IBM.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited