OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19252–19260

Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators

Chuan Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19252-19260 (2013)
http://dx.doi.org/10.1364/OE.21.019252


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we investigate a physical implementation of the universal quantum controlled phase (CPHASE) gate operation on photonic qubits by using nitrogen vacancy (N-V) centers and microcavity resonators. The quantum CPHASE gate can be achieved by sending the photons through the microcavity and interacting with the N-V center. The proposed scheme can be further used for scalable quantum computation. We show that this technique provides us a deterministic source of cluster state generation on photonic qubits. In this scheme, only single photons and single N-V center are required and the proposed schemes are feasible with the current experimental technology.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 8, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: July 20, 2013
Published: August 6, 2013

Citation
Chuan Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin, "Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators," Opt. Express 21, 19252-19260 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422, 408–411 (2003). [CrossRef] [PubMed]
  2. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301, 809–811 (2003). [CrossRef]
  3. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett.94, 030501 (2005). [CrossRef] [PubMed]
  4. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010). [CrossRef]
  5. K. Lemr, A. Cernoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dusek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett.106, 013602 (2011). [CrossRef] [PubMed]
  6. R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett.107, 250501 (2011). [CrossRef]
  7. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010). [CrossRef]
  8. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A84, 010301(R)(2011). [CrossRef]
  9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  10. Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  11. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature466, 730–734 (2010). [CrossRef] [PubMed]
  12. C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Ame. B29(12), 3349–3354 (2012). [CrossRef]
  13. R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, “Polarization and readout of coupled single spins in diamond,” Phys. Rev. Lett.97, 087601 (2006);;L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314, 281–285 (2006). [CrossRef] [PubMed]
  14. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).
  15. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009). [CrossRef]
  16. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001) [CrossRef] [PubMed]
  17. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005) [CrossRef] [PubMed]
  18. X. B. Zou, S.L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A75, 034302 (2007). [CrossRef]
  19. N.K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005). [CrossRef] [PubMed]
  20. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A, 79, 022301 (2009). [CrossRef]
  21. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10, 123013 (2008). [CrossRef]
  22. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004). [CrossRef] [PubMed]
  23. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “Weak nonlinearities and cluster states,” Phys. Rev. A75, 042323 (2007). [CrossRef]
  24. Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A82, 022331 (2010). [CrossRef]
  25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008). [CrossRef] [PubMed]
  26. J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Phys. Rev. A75, 052319 (2007). [CrossRef]
  27. Y. X. Liu, L. F. Wei, J. S. Tsai, and F. Nori, “Controllable coupling between flux qubits,” Phys. Rev. Lett.96, 067003 (2006). [CrossRef] [PubMed]
  28. P. E. Barclay, K. -M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009). [CrossRef] [PubMed]
  29. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009). [CrossRef] [PubMed]
  30. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008). [CrossRef] [PubMed]
  31. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited