OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19261–19268

Conductive optical-fiber STM probe for local excitation and collection of cathodoluminescence at semiconductor surfaces

Kentaro Watanabe, Yoshiaki Nakamura, and Masakazu Ichikawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19261-19268 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luminescence imaging of semiconductor surfaces in nanometric resolution is a key to novel optoelectronic nano-devices, which requires local carrier excitation and local luminescence collection within the nanometric areas at the surfaces. However, there have not been a practical nanospectroscopies applicable to wide range of specimens. STM-cathodoluminescence (STM-CL) nanospectroscopy offers both high spatial resolution (of the order of 10 nm) and novel high carrier excitation power (up to ~1 mW), which enables local luminescence imaging of less-luminescent nano-structures. In this study, we advanced STM-CL technique by introducing a novel optical fiber probe with Cr thin film coating (Cr-FP), which was found to work as a STM probe, as an electron field-emitter for local carrier excitation, and as an alignment-free efficient local STM-CL collector which blinds luminescence after the minority carrier diffusion.

© 2013 OSA

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.6000) Materials : Semiconductor materials
(180.5810) Microscopy : Scanning microscopy
(250.1500) Optoelectronics : Cathodoluminescence
(350.3950) Other areas of optics : Micro-optics
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: April 4, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: July 12, 2013
Published: August 6, 2013

Kentaro Watanabe, Yoshiaki Nakamura, and Masakazu Ichikawa, "Conductive optical-fiber STM probe for local excitation and collection of cathodoluminescence at semiconductor surfaces," Opt. Express 21, 19261-19268 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000). [CrossRef] [PubMed]
  2. Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010). [CrossRef] [PubMed]
  3. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994). [CrossRef] [PubMed]
  4. U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999). [CrossRef]
  5. T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999). [CrossRef]
  6. T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004). [CrossRef] [PubMed]
  7. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000). [CrossRef]
  8. D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990). [CrossRef]
  9. S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997). [CrossRef]
  10. R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991). [CrossRef]
  11. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993). [CrossRef] [PubMed]
  12. K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996). [CrossRef]
  13. T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002). [CrossRef]
  14. L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994). [CrossRef]
  15. U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002). [CrossRef]
  16. I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997). [CrossRef]
  17. T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection,” J. Vac. Sci. Technol. B15(1), 32–37 (1997). [CrossRef]
  18. T. Murashita, “Optical system for tunneling-electron luminescence spectro/microscopes with conductive-transparent tips in ultrahigh vacuums,” J. Vac. Sci. Technol. B17(1), 22–28 (1999). [CrossRef]
  19. T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001). [CrossRef]
  20. I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009). [CrossRef] [PubMed]
  21. D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004). [CrossRef] [PubMed]
  22. D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004). [CrossRef]
  23. M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993). [CrossRef]
  24. D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006). [CrossRef] [PubMed]
  25. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011). [CrossRef]
  26. K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008). [CrossRef]
  27. K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008). [CrossRef]
  28. K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009). [CrossRef]
  29. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992). [CrossRef]
  30. T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993). [CrossRef]
  31. K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012). [CrossRef]
  32. K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011). [CrossRef]
  33. D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: PDF (306 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited