OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19302–19310

Laser cooling of CdS nanobelts: Thickness matters

Dehui Li, Jun Zhang, and Qihua Xiong  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19302-19310 (2013)
http://dx.doi.org/10.1364/OE.21.019302


View Full Text Article

Enhanced HTML    Acrobat PDF (1163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the thickness dependent laser cooling in CdS nanobelts pumped by a 532 nm green laser. The lowest achievable cooling temperature is found to strongly depend on thickness. No net cooling can be achieved in nanobelts with a thickness below 65 nm due to nearly zero absorption and larger surface nonradiative recombination. While for nanobelts thicker than ~120 nm, the reabsorption effect leads to the reduction of the cooling temperature. Based on the thickness dependent photoconductivity gain, mean emission energy and external quantum efficiency, the modeling of the normalized temperature change suggests a good agreement with the experimental results.

© 2013 OSA

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(160.6000) Materials : Semiconductor materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 6, 2013
Revised Manuscript: July 27, 2013
Manuscript Accepted: July 28, 2013
Published: August 7, 2013

Citation
Dehui Li, Jun Zhang, and Qihua Xiong, "Laser cooling of CdS nanobelts: Thickness matters," Opt. Express 21, 19302-19310 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Zeitschrift für Physik A Hadrons and Nuclei 57, 739–746 (1929).
  2. R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).
  3. M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007). [CrossRef]
  4. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995). [CrossRef]
  5. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010). [CrossRef]
  6. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010). [CrossRef] [PubMed]
  7. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express19(19), 18229–18236 (2011). [CrossRef] [PubMed]
  8. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009). [CrossRef]
  9. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004). [CrossRef] [PubMed]
  10. J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys.100(11), 113116 (2006). [CrossRef]
  11. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett.98(17), 177401 (2007). [CrossRef]
  12. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B77(23), 235206 (2008). [CrossRef]
  13. G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006). [CrossRef] [PubMed]
  14. G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007). [CrossRef]
  15. E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999). [CrossRef]
  16. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997). [CrossRef]
  17. B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005). [CrossRef]
  18. D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013). [CrossRef]
  19. J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013). [CrossRef] [PubMed]
  20. D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012). [CrossRef] [PubMed]
  21. D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012). [CrossRef] [PubMed]
  22. B. Imangholi, “Investigation of laser cooling in semiconductors,” (The University of New Mexico, United States - New Mexico., 2006).
  23. U. Rossler, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter. Semiconductors: II–VI and I–VII compounds, Vol. 41B (Springer: Berlin Heidelberg, 1999).
  24. G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986). [CrossRef]
  25. P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973). [CrossRef]
  26. D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984). [CrossRef]
  27. X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011). [CrossRef] [PubMed]
  28. X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited