OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19311–19323

Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate

F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H.U. Krebs  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19311-19323 (2013)
http://dx.doi.org/10.1364/OE.21.019311


View Full Text Article

Enhanced HTML    Acrobat PDF (6772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compound optics such as lens systems can overcome the limitations concerning resolution, efficiency, or aberrations which fabrication constraints would impose on any single optical element. In this work we demonstrate unprecedented sub-5 nm point focusing of hard x-rays, based on the combination of a high gain Kirkpatrick-Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP) for ultra-short focal length f. The pre-focusing allows limiting the MZP radius to below 2 μm, compatible with the required 5 nm structure width and essentially unlimited aspect ratios, provided by enabling fabrication technology based on pulsed laser deposition (PLD) and focused ion beam (FIB).

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

History
Original Manuscript: June 11, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: July 29, 2013
Published: August 7, 2013

Citation
F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H.U. Krebs, "Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate," Opt. Express 21, 19311-19323 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Niemann, D. Rudolph, and G. Schmahl, “Soft X-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun.12, 160–163 (1974). [CrossRef]
  2. C. Schroer, “Focusing hard x-rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B74, 033405 (2006). [CrossRef]
  3. H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G.B. Stephenson, and H.C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B76, 115438 (2007). [CrossRef]
  4. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature38449–51 (1996). [CrossRef]
  5. C.G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett.87, 124103 (2005). [CrossRef]
  6. P. Kirkpatrick and A.V. Baez, “Formation of optical images by x-rays,” Opt. Soc. Am.38, 766–773 (1948). [CrossRef]
  7. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10nm barrier in hard x-ray focusing,” Nature Phys.6, 122 (2010). [CrossRef]
  8. K. Yamauchi, H. Mimura, T. Kimura, H. Yumoto, S. Handa, S. Matsuyama, K. Arima, Y. Sano, K. Yamamura, K. Inagaki, H. Nakamori, J. Kim, K. Tamasaku, Y. Nishino, M. Yabashi, and T. Ishikawa, “Single-nanometer focusing of hard x-rays by Kirkpatrick–Baez mirrors,” J. Phys.: Condensed Matter23, 394206 (2011). [CrossRef]
  9. M. Howells, C. Jacobsen, T. Warwick, and A. Bos, “Principles and Applications of Zone Plate X-Ray Microscopes, in Hawkes,” in Science of Microscopy, P. W., J. C. H. Spence, (Springer, New York, 2007), pp. 835–926. [CrossRef]
  10. J. Vila-Comamala, Y. Pan, J.J. Lombardo, W.M. Harris, W.K.S. Chiu, C. David, and Y. Wang, “Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy,” J. Synchrotron Rad.19, 705–709 (2012). [CrossRef]
  11. W. Chao, E. Anderson, G.P. Denbeaux, B. Harteneck, J.A. Liddle, D.L. Olynick, A.L. Pearson, F. Salmassi, C. Yu Song, and D.T. Attwood, “20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures,” Optics Lett.28, 2019–2021 (2003). [CrossRef]
  12. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-Doubling Technique to Produce Ultrahigh-Resolution X-Ray Optics,” Phys. Rev. Lett.99, 264801 (2007). [CrossRef]
  13. H.C. Kang, J. Maser, G.B. Stephenson, C. Liu, R. Conley, A.T. Macrander, and S. Vogt, “Nanometer Linear Focusing of Hard X-Rays by a Multilayer Laue Lens,” Phys. Rev. Lett.96, 127401 (2006). [CrossRef]
  14. H.C. Kang, H. Yan, R.P. Winarski, M.V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A.T. Macrander, and G.B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett.92, 221114 (2008). [CrossRef]
  15. A. Ruhlandt, T. Liese, V. Radisch, S.P. Krüger, M. Osterhoff, G. Giewekemeyer, H.U. Krebs, and T. Salditt, “A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10nm x-ray focusing,” AIP Advances2, 012175 (2012). [CrossRef]
  16. T. Koyama, T. Tsuji, H. Takano, Y. Kagoshima, S. Ichimaru, T. Ohchi, and H. Takenaka, “Development of Multilayer Laue Lenses; (2) Circular Type.” AIP Conf. Proc.: The 10th International Conference On X-Ray Microscope1365, 100 (2011). [CrossRef]
  17. T. Koyama, H. Takano, S. Konishi, T. Tsuji, H. Takenaka, S. Ichimaru, T. Ohchi, and Y. Kagoshima, “Circular multilayer zone plate for high-energy x-ray nano-imaging,” Rev. Sci. Instrum.83, 013705 (2012). [CrossRef] [PubMed]
  18. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 1999). [CrossRef]
  19. M.J. Simpson and A.G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta31, 403–413 (1984). [CrossRef]
  20. D. Rudolph, B. Niemann, and G. Schmahl, Proc. Soc. Photo-Opt. Instrum. Eng.316, 103 (1981).
  21. W.B. Yun, P.J. Viccaro, B. Lai, and J. Chrzas, “Coherent hard x-ray focusing optics and applications,” Rev. Sci. Instrum.63, 582–585 (1992). [CrossRef]
  22. M. Yasumoto, S. Tamura, N. Kamijo, Y. Suzuki, A. Takeuchi, K. Uesugi, and Y. Terada, “Microstructure of Multilayer Fresnel Zone Plate for X-ray Focusing,” Physics Procedia32, 157–160 (2012). [CrossRef]
  23. J. Röder, T. Liese, and H.U. Krebs, “Material-dependent smoothing of periodic rippled structures by pulsed laser deposition,” J. Appl. Phys.107, 103515 (2010). [CrossRef]
  24. H.C. Kang, G.B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A.T. Macrander, H. Yan, J. Maser, J. Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum.78, 046103 (2007). [CrossRef] [PubMed]
  25. T. Liese, V. Radisch, and H.U. Krebs, “Fabrication of multilayer Laue lenses by a combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum.81, 073710 (2010). [CrossRef] [PubMed]
  26. H.U. Krebs and O. Bremert, “Pulsed laser deposition of thin metallic alloys,” Appl. Phys. Lett.62, 2341–2343 (1993). [CrossRef]
  27. C. Eberl, T. Liese, F. Schlenkrich, F. Döring, H. Hofsäss, and H.U. Krebs, “Enhanced resputtering and asymmetric interface mixing in W/Si multilayers,” Appl. Phys. A111, 431–437 (2013). [CrossRef]
  28. J.W. Goodman, J. Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005).
  29. H.M. Quiney, A.G. Peele, Z. Cai, D. Paterson, and K.A. Nugent, “Diffractive imaging of highly focused X-ray fields,” Nature Physics2, 101–104 (2006). [CrossRef]
  30. C. Bergemann, H. Keymeulen, and J.F. van der Veen, “Focusing X-Ray Beams to Nanometer Dimensions,” Phys. Rev. Lett.91, 204801 (2003). [CrossRef] [PubMed]
  31. D.G. Voelz and M.C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt.48, 6132–6142 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited