OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19324–19338

Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography

Adrian Gh. Podoleanu and Adrian Bradu  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19324-19338 (2013)
http://dx.doi.org/10.1364/OE.21.019324


View Full Text Article

Enhanced HTML    Acrobat PDF (1562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(200.4960) Optics in computing : Parallel processing
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: May 2, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 31, 2013
Published: August 7, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Adrian Gh. Podoleanu and Adrian Bradu, "Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography," Opt. Express 21, 19324-19338 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Appl. Opt.19(4), 638–644 (1980). [CrossRef] [PubMed]
  2. L. M. Smith and C. C. Dobson, “Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer,” Appl. Opt.28(16), 3339–3342 (1989). [CrossRef] [PubMed]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  5. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  6. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express18(9), 9511–9517 (2010). [CrossRef] [PubMed]
  7. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express16(12), 8916–8937 (2008). [CrossRef] [PubMed]
  8. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  9. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49(25), 4756–4762 (2010). [CrossRef] [PubMed]
  10. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  11. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  12. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res.27(4), 464–499 (2008). [CrossRef] [PubMed]
  13. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  15. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005). [CrossRef] [PubMed]
  16. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006). [CrossRef] [PubMed]
  17. A. G. Podoleanu, “Principles of en-face optical coherence tomography: real time and post processing en-face imaging in ophthalmology Clinical en-face OCT atlas,” in Principles of En-Face Optical Coherence Tomography: Real Time and Post Processing En-Face Imaging in Ophthalmology, B. Lumbrusso ed. (JayPee Brothers Medical Publishers, LTD, 2012).
  18. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010). [CrossRef] [PubMed]
  19. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008). [CrossRef] [PubMed]
  20. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real-time en-face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008).
  21. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012). [CrossRef] [PubMed]
  22. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  23. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  24. M. A. Bail, G. Haeusler, J. M. Herrmann, M. W. Lindner, and R. Ringler, “Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry,” Proc. SPIE2925, 298–303 (1996). [CrossRef]
  25. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000). [CrossRef]
  26. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009). [CrossRef] [PubMed]
  27. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  28. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  29. A. Bradu and A. G. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt.16(7), 076010 (2011). [CrossRef] [PubMed]
  30. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express18(9), 9511–9517 (2010). [CrossRef] [PubMed]
  31. A. Bradu and A. G. Podoleanu, “Fourier domain optical coherence tomography system with balance detection,” Opt. Express20(16), 17522–17538 (2012). [CrossRef] [PubMed]
  32. S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical Recipes,” in The Art of Scientific Computing (Cambridge University Press, 2007).
  33. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4411 KB)     
» Media 2: AVI (5783 KB)     
» Media 3: AVI (5423 KB)     
» Media 4: AVI (5103 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited