OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19353–19362

Investigation of the confocal wavefront sensor and its application to biological microscopy

Michael Shaw, Kevin O’Holleran, and Carl Paterson  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19353-19362 (2013)
http://dx.doi.org/10.1364/OE.21.019353


View Full Text Article

Enhanced HTML    Acrobat PDF (1918 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

© 2013 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering
(110.0180) Imaging systems : Microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: June 14, 2013
Revised Manuscript: July 24, 2013
Manuscript Accepted: August 1, 2013
Published: August 8, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Michael Shaw, Kevin O’Holleran, and Carl Paterson, "Investigation of the confocal wavefront sensor and its application to biological microscopy," Opt. Express 21, 19353-19362 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  2. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32(1), 5–7 (2007). [CrossRef] [PubMed]
  3. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007). [CrossRef] [PubMed]
  4. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  5. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010). [CrossRef] [PubMed]
  6. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  7. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011). [CrossRef] [PubMed]
  8. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]
  9. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett.29(19), 2255–2257 (2004). [CrossRef] [PubMed]
  10. J. Wang and A. G. Podoleanu, “Demonstration of real-time depth-resolved Shack-Hartmann measurements,” Opt. Lett.37(23), 4862–4864 (2012). [CrossRef] [PubMed]
  11. L. A. Poyneer and B. Macintosh, “Spatially filtered wave-front sensor for high-order adaptive optics,” J. Opt. Soc. Am. A21(5), 810–819 (2004). [CrossRef] [PubMed]
  12. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media2(3), 209–224 (1992). [CrossRef]
  13. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010). [CrossRef] [PubMed]
  14. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express20(3), 2598–2612 (2012). [CrossRef] [PubMed]
  15. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express12(26), 6540–6552 (2004). [CrossRef] [PubMed]
  16. X. D. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, W. Sullivan, and J. Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express20(14), 15969–15982 (2012). [CrossRef] [PubMed]
  17. J. Notaras and C. Paterson, “Point-diffraction interferometer for atmospheric adaptive optics in strong scintillation,” Opt. Commun.281(3), 360–367 (2008). [CrossRef]
  18. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.70(8), 998–1006 (1980). [CrossRef]
  19. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express18(7), 6900–6913 (2010). [CrossRef] [PubMed]
  20. X. D. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]
  21. M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc.215(3), 271–280 (2004). [CrossRef] [PubMed]
  22. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng.29(10), 1174–1180 (1990). [CrossRef]
  23. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc.244(2), 113–121 (2011). [CrossRef] [PubMed]
  24. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt.41(6), 1012–1021 (2002). [CrossRef] [PubMed]
  25. C. Paterson and J. Notaras, “Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices,” Opt. Express15(21), 13745–13756 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited