OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19387–19394

Sub-Poissonian-light generation by postselection from twin beams

Jan Peřina, Jr., Ondřej Haderka, and Václav Michálek  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19387-19394 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



States with sub-Poissonian photon-number statistics obtained by post-selection from twin beams are experimentally generated. States with Fano factors down to 0.62 and mean photon numbers around 12 are reached. Their quasi-distributions of integrated intensities attaining negative values are reconstructed. An intensified CCD camera with a quantum detection efficiency exceeding 20% is utilized both for post-selection and beam characterization. Experimental results are compared with theory that provides the optimum experimental conditions.

© 2013 OSA

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(040.5570) Detectors : Quantum detectors
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Coherence and Statistical Optics

Original Manuscript: May 16, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 12, 2013
Published: August 8, 2013

Jan Peřina, Ondřej Haderka, and Václav Michálek, "Sub-Poissonian-light generation by postselection from twin beams," Opt. Express 21, 19387-19394 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995). [CrossRef]
  2. J. Peřina, Z. Hradil, and B. Jurčo, Quantum Optics and Fundamentals of Physics (Kluwer, Dordrecht, 1994). [CrossRef]
  3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  4. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum state tomography,” Rev. Mod. Phys.81, 299–332 (2009). [CrossRef]
  5. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986). [CrossRef]
  6. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett.83, 2722–2725 (1999). [CrossRef]
  7. B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys.6, 97 (2004). [CrossRef]
  8. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000). [CrossRef] [PubMed]
  9. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Phot.5, 301–305 (2011). [CrossRef]
  10. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New. J. Phys.6, 89 (2004). [CrossRef]
  11. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30, 1539–1541 (2008). [CrossRef]
  12. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. Della Frera, A. Tosi, A. Bahgat Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett.101, 221112 (2012). [CrossRef]
  13. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, M. V. Chekhova, A. Aiello, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Comm.4, 1818 (2013).
  14. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81, 5039–5043 (1998). [CrossRef]
  15. M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep.413, 319–396 (2005). [CrossRef]
  16. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  17. A. Migdall, “Correlated-photon metrology without absolute standards,” Physics Today52, 41–46 (1999). [CrossRef]
  18. A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon ellipsometry,” J. Opt. Soc. Am. B19, 656–662 (2002). [CrossRef]
  19. G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Phys. Lett.3, 115–123 (2006). [CrossRef]
  20. M. Lindenthal and J. Kofler, “Measuring the absolute photodetection efficiency using photon number correlations,” Appl. Opt.45, 6059–6063 (2006). [CrossRef] [PubMed]
  21. J. Perina, O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett.37, 2475–2477 (2012). [CrossRef] [PubMed]
  22. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000). [CrossRef] [PubMed]
  23. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2011). [CrossRef]
  24. M. A. Nielsen and I. L. Juang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
  25. R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett.51, 384–387 (1983). [CrossRef]
  26. M. C. Teich and B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B2, 275–282 (1985). [CrossRef]
  27. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett.4, 293–299 (1987). [CrossRef]
  28. M. Koashi, K. Kono, T. Hirano, and M. Matsuoka, “Photon antibunching in pulsed squeezed light generated via parametric amplification,” Phys. Rev. Lett.71, 1164–1167 (1993). [CrossRef] [PubMed]
  29. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–583 (2001). [CrossRef]
  30. J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-Poissonian state from twin beams,” Phys. Rev. Lett.91, 213601 (2003). [CrossRef] [PubMed]
  31. J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett.64, 2897–2900 (1990). [CrossRef] [PubMed]
  32. J. Peřina, O. Haderka, and J. Soubusta, “Quantum cryptography using a photon source based on postselection from entangled two-photon states,” Phys. Rev. A64, 052305 (2001). [CrossRef]
  33. J. Peřina, J. Křepelka, J. Peřina, M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams,” Phys. Rev. A76, 043806 (2007). [CrossRef]
  34. J. Peřina, J. Křepelka, J. Peřina, M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields,” Eur. Phys. J. D53, 373–382 (2009). [CrossRef]
  35. O. Haderka, M. Hamar, and J. Peřina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D28, 149–154 (2004). [CrossRef]
  36. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A67, 061801(R) (2003). [CrossRef]
  37. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett.28, 2387 (2003). [CrossRef] [PubMed]
  38. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A68, 043814 (2003). [CrossRef]
  39. A. Allevi, M. Bondani, and A. Andreoni, “Photon-number correlations by photon-number resolving detectors,” Opt. Lett.35, 1707–1709 (2010). [CrossRef] [PubMed]
  40. M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B27, 852–862 (2010). [CrossRef]
  41. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A75, 062325 (2007). [CrossRef]
  42. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003). [CrossRef]
  43. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Goltsman, K. G. Lagoudakis, M. Benkahoul, F. Levy, and A. Fiore, “Superconducting nanowire photonnumber-resolving detector at telecommunication wavelengths,” Nat. Phot.2, 302–306 (2008). [CrossRef]
  44. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express19, 870–875 (2011). [CrossRef] [PubMed]
  45. L. Lolli, G. Brida, I. P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. Ruo-Berchera, E. Taralli, and P. Traina, “Ti/Au TES as superconducting detector for quantum technologies,” Int. J. Quant. Inf.9, 405–413 (2011). [CrossRef]
  46. O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A71, 033815 (2005). [CrossRef]
  47. M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A81, 043827 (2010). [CrossRef]
  48. J. Peřina, M. Hamar, V. Michálek, and O. Haderka, “Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera,” Phys. Rev. A85, 023816 (2012). [CrossRef]
  49. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991). [CrossRef]
  50. J. Peřina and J. Křepelka, “Multimode description of spontaneous parametric down-conversion,” J. Opt. B: Quant. Semiclass. Opt.7, 246–252 (2005). [CrossRef]
  51. J. Peřina, O. Haderka, V. Michálek, and M. Hamar, “State reconstruction of a multimode twin beam using photodetection,” Phys. Rev. A87, 022108 (2013). [CrossRef]
  52. J. Peřina and J. Křepelka, “Joint probability distributions of stimulated parametric down-conversion for controllable nonclassical fluctuations,” Eur. Phys. J. D281, 4705–4711 (2008).
  53. B. E. A. Saleh and M. C. Teich, “Can the channel capacity of a light-wave communication system be increased by the use of photon-number-squeezed light?” Phys. Rev. Lett.58, 2656–2659 (1987). [CrossRef] [PubMed]
  54. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96, 010401 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited