OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19467–19472

Label-free DNA sensing using millimeter-wave silicon WGM resonator

Aidin Taeb, Mohammed A. Basha, Suren Gigoyan, Mungo Marsden, and Safieddin. Safavi-Naeini  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19467-19472 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A planar dielectric waveguide based structure for bio-sensing purpose is introduced. The proposed device is a silicon-based WGM disc resonator operating within the range of 75-110 GHz (W-band). The sensor is an integrated, miniaturized, low-cost, and easy-to-fabricate bio-sensor structure. The proposed sensor can be used for a number of DNA characterization tasks including Mutation in DNA oligonucleotide. Two types of DNAs, single strand and double strand DNAs, are successfully tested by our integrated sensor. The measurement repeatability and selectivity of the proposed sensor are examined through the different experimental lab-tests.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7390) Optical devices : Waveguides, planar
(350.4010) Other areas of optics : Microwaves
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: June 3, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: August 1, 2013
Published: August 12, 2013

Aidin Taeb, Mohammed A. Basha, Suren Gigoyan, Mungo Marsden, and Safieddin. Safavi-Naeini, "Label-free DNA sensing using millimeter-wave silicon WGM resonator," Opt. Express 21, 19467-19472 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009). [CrossRef] [PubMed]
  2. S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009). [CrossRef] [PubMed]
  3. M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012). [CrossRef] [PubMed]
  4. J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008). [CrossRef] [PubMed]
  5. K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).
  6. C. Vedrenne and J. Arnold, “Whispering gallery modes of dielectric resonators” IEE Proceedings Microwaves, Optics and Antennas, 129(4), 183–187, (1982). [CrossRef]
  7. E. N. Shaforost, N. Klein, A. I. Gubin, A. A. Barannik and A. M. Klushin “Microwave-millimetre wave WGM resonators for evanescent sensing of nanolitre liquid substances,” Microwave Conference EuMC 2009. European, 45–48, (2009).
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  9. H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007). [CrossRef]
  10. M. Basha, B. Biglarbegian, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “Low-cost, monolithic and integrated whispering gallery mode ring resonator for sensing applications,” European Microwave Conference (EuMC), 2011 41st European, 515–518, (2011).
  11. A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012). [CrossRef]
  12. M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991). [CrossRef]
  13. R. K. Mongia, “Resonant frequency of cylendrical dielectric resonator placed in an MIC environment,” IEEE Trans. Microw. Theory Tech.38(6), 802–804 (1990). [CrossRef]
  14. L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986). [CrossRef]
  15. M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011). [CrossRef]
  16. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization,” Appl. Opt.41(10), 2074–2078 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited