OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19473–19487

Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths

Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Marcel.li Grimau, Matteo Cristiani, and Hugues de Riedmatten  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19473-19487 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30 ns from a wavelength of 780 nm to 1552 nm. We measure a maximal waveguide internal (external) conversion efficiency ηγint = 0.41 (ηext = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 31, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 26, 2013
Published: August 12, 2013

Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Marcel.li Grimau, Matteo Cristiani, and Hugues de Riedmatten, "Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths," Opt. Express 21, 19473-19487 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  2. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
  3. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011). [CrossRef]
  4. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005). [CrossRef] [PubMed]
  5. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008). [CrossRef] [PubMed]
  6. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010). [CrossRef] [PubMed]
  7. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011). [CrossRef]
  8. M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012). [CrossRef]
  9. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992). [CrossRef] [PubMed]
  10. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005). [CrossRef] [PubMed]
  11. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010). [CrossRef]
  12. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012). [CrossRef] [PubMed]
  13. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett.35, 2591–2593 (2010). [CrossRef] [PubMed]
  14. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010). [CrossRef] [PubMed]
  15. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010). [CrossRef]
  16. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011). [CrossRef] [PubMed]
  17. S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012). [CrossRef] [PubMed]
  18. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012). [CrossRef] [PubMed]
  19. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011). [CrossRef]
  20. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010). [CrossRef]
  21. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010). [CrossRef] [PubMed]
  22. D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006). [CrossRef]
  23. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005). [CrossRef] [PubMed]
  24. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010). [CrossRef] [PubMed]
  25. M. A. Albota and F. C. Wong, “Efficient single-photon counting at 1.55 μ m by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004). [CrossRef] [PubMed]
  26. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett.29, 1518–1520 (2004). [CrossRef] [PubMed]
  27. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. NTuB1.
  28. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013). [CrossRef] [PubMed]
  29. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011). [CrossRef] [PubMed]
  30. H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011). [CrossRef] [PubMed]
  31. M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012). [CrossRef]
  32. S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995). [CrossRef] [PubMed]
  33. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003). [CrossRef] [PubMed]
  34. F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013). [CrossRef]
  35. P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited