OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19510–19517

Optical data encryption using time-dependent dynamics of refractive index changes in LiNbO3

Daniel Sando and Esa Jaatinen  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19510-19517 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for optical encryption of information, based on the time-dependent dynamics of writing and erasure of refractive index changes in a bulk lithium niobate medium. Information is written into the photorefractive crystal with a spatially amplitude-modulated laser beam which when overexposed significantly degrades the stored data making it unrecognizable. We show that the degradation can be reversed and that a one-to-one relationship exists between the degradation and recovery rates. It is shown that this simple relationship can be used to determine the erasure time required for decrypting the scrambled index patterns. In addition, this method could be used as a straightforward general technique for determining characteristic writing and erasure rates in photorefractive media.

© 2013 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(210.4770) Optical data storage : Optical recording

ToC Category:
Optical Data Storage

Original Manuscript: June 10, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 1, 2013
Published: August 12, 2013

Daniel Sando and Esa Jaatinen, "Optical data encryption using time-dependent dynamics of refractive index changes in LiNbO3," Opt. Express 21, 19510-19517 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature (London)393, 665–668 (1998). [CrossRef]
  2. Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, “Three-dimensional optical memory with a photorefractive crystal,” Appl. Opt.34, 4105–4110 (1995). [CrossRef] [PubMed]
  3. Y. Gao, S. Liu, R. Guo, Z. Liu, and T. Song, “Transmission of digital images consisting of white-light dark solitons,” Appl. Opt.44, 6948–6951 (2005). [CrossRef] [PubMed]
  4. M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68, 923–927 (1992). [CrossRef] [PubMed]
  5. B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, “Self-trapping of optical beams in photorefractive media,” J. Opt. Soc. Am. B.10, 446–453 (1993). [CrossRef]
  6. G. J. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71, 533–536 (1993). [CrossRef] [PubMed]
  7. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett.20, 2066–2068 (1993). [CrossRef]
  8. M. Chauvet, G. Fu, and G. Salamo, “Assessment method for photo-induced waveguides,” Opt. Express14, 10726–10732 (2006). [CrossRef] [PubMed]
  9. A. Ashkin, G. Boyd, J. Dziedzic, R. Smith, A. Ballman, J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett.9, 72–74 (1966). [CrossRef]
  10. H. Kurz, “Photorefractive recording dynamics and multiple storage of volume holograms in photorefractive LiNbO3,” Opt. Act.24, 463–473 (1977). [CrossRef]
  11. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E.54, 6866–6875 (1996). [CrossRef]
  12. E. Maniloff and K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys.70, 4702–4707 (1991). [CrossRef]
  13. D. Sando, E. Jaatinen, and F. Devaux, “Reversal of degradation of information masks in lithium niobate,” Appl. Opt.48, 4676–4682 (2009). [CrossRef] [PubMed]
  14. D. Psaltis, F. Mok, and H.-Y. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett.19, 210–212 (1994). [CrossRef] [PubMed]
  15. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics22, 949–960 (1979). [CrossRef]
  16. K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, “Low-spatial-frequency refractive-index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam,” J. Opt. Soc. Am. B17, 586–592 (2000). [CrossRef]
  17. L. Arizmendi, E. de Miguel-Sanz, and M. Carrascosa, “Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett.23, 960–962 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited