OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19538–19543

Demonstration of tunable optical delay lines based on apodized grating waveguides

Saeed Khan and Sasan Fathpour  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19538-19543 (2013)
http://dx.doi.org/10.1364/OE.21.019538


View Full Text Article

Enhanced HTML    Acrobat PDF (911 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-speed and tunable integrated optical delay lines are demonstrated based on silicon grating waveguides apodized by the super-Gaussian function. The submicron channel waveguides with inward-apodized gratings are fabricated by deep-ultraviolet optical lithography. Characterization of the compact delay lines shows that they offer true-time delays as long as 132 ps, tuning range of ~86 ps, and a minimum bit rate of ~13 Gb/s. For lower bit rates, delays as high as 220 ps and tuning range of 174 ps are feasible.

© 2013 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optoelectronics

History
Original Manuscript: June 21, 2013
Revised Manuscript: July 28, 2013
Manuscript Accepted: August 2, 2013
Published: August 12, 2013

Citation
Saeed Khan and Sasan Fathpour, "Demonstration of tunable optical delay lines based on apodized grating waveguides," Opt. Express 21, 19538-19543 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” SPIE J. Optical Eng.49(1), 018201 (2010). [CrossRef]
  2. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express16(14), 10349–10357 (2008). [CrossRef] [PubMed]
  3. E. Choi, J. Na, S. Ryu, G. Mudhana, and B. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express13(4), 1334–1345 (2005). [CrossRef] [PubMed]
  4. S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett.9(5), 634–635 (1997). [CrossRef]
  5. F. Xia, L. Sekaric, and Y. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  6. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010). [CrossRef]
  7. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012). [CrossRef]
  8. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012). [CrossRef]
  9. Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” Proc. SPIE5733, 166–175 (2005). [CrossRef]
  10. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron.16(1), 192–199 (2010). [CrossRef]
  11. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011). [CrossRef] [PubMed]
  12. S. Khan and S. Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Opt. Express20(18), 19859–19867 (2012). [CrossRef] [PubMed]
  13. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  14. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett.31(1), 50–52 (2006). [CrossRef] [PubMed]
  15. G. P. Agrawal, Fiber-optic Communication Systems (Wiley, 2002), p. 26.
  16. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited