OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19593–19607

Silicon photonics plasma-modulators with advanced transmission line design

Florian Merget, Saeed Sharif Azadeh, Juliana Mueller, Bin Shen, Maziar P. Nezhad, Johannes Hauck, and Jeremy Witzens  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19593-19607 (2013)
http://dx.doi.org/10.1364/OE.21.019593


View Full Text Article

Enhanced HTML    Acrobat PDF (2881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated two novel concepts for the design of transmission lines in travelling wave Mach-Zehnder interferometer based Silicon Photonics depletion modulators overcoming the analog bandwidth limitations arising from cross-talk between signal lines in push-pull modulators and reducing the linear losses of the transmission lines. We experimentally validate the concepts and demonstrate an E/O −3 dBe bandwidth of 16 GHz with a 4V drive voltage (in dual drive configuration) and 8.8 dB on-chip insertion losses. Significant bandwidth improvements result from suppression of cross-talk. An additional bandwidth enhancement of ~11% results from a reduction of resistive transmission line losses. Frequency dependent loss models for loaded transmission lines and E/O bandwidth modeling are fully verified.

© 2013 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3120) Optical devices : Integrated optics devices
(230.7020) Optical devices : Traveling-wave devices
(250.7360) Optoelectronics : Waveguide modulators
(130.4110) Integrated optics : Modulators
(250.4110) Optoelectronics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: July 5, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 3, 2013
Published: August 13, 2013

Citation
Florian Merget, Saeed Sharif Azadeh, Juliana Mueller, Bin Shen, Maziar P. Nezhad, Johannes Hauck, and Jeremy Witzens, "Silicon photonics plasma-modulators with advanced transmission line design," Opt. Express 21, 19593-19607 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  2. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).
  4. D. Kucharski, D. Guckenberg, G. Masini, S. Abdalla, J. Witzens, and S. Sahni, “10Gb/s 15mW Optical Receiver with Integrated Germanium Photodetector and Hybrid Inductor Peaking in 0.13μm SOI CMOS Technology,” Proc. 2010 IEEE Intern. Sol.-State Circ. Conf. (ISSCC), 360–361 (2010).
  5. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010). [CrossRef]
  6. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. Lasers and Electro-Optics Soc. (LEOS), 848–849 (2007).
  7. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  8. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  9. G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express16(8), 5218–5226 (2008). [CrossRef] [PubMed]
  10. J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
  11. T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  12. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  13. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. L. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012). [CrossRef] [PubMed]
  14. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010). [CrossRef] [PubMed]
  15. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  16. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  17. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  18. D. Kucharski, B. Analui, L. C. Gunn, R. Koumans, T. Pinguet, and T. Sadagopan, “Distributed amplifier optical modulator,” U.S. Patent 7 899 276 (2011).
  19. J. Witzens, B. Analui, S. Mirsaidi, T. Sadagopan, B. Welch, and A. Narasimha, “Integrated control system for laser and Mach-Zehnder interferometer,” U.S. Patent 7 916 377 (2011).
  20. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008). [CrossRef]
  21. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  22. D. G. Cunningham, “Traveling wave optical modulator,” U.S. Patent 5 091 981 (1992).
  23. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  24. F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited