OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19608–19614

Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz

Alexander A. Lagatsky, Amol Choudhary, Pradeesh Kannan, David P. Shepherd, Wilson Sibbett, and Christian T. A. Brown  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19608-19614 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate passively mode-locked Yb3+-doped glass waveguide lasers in a quasi-monolithic configuration with a maximum pulse repetition frequency up to 15.2 GHz. A semiconductor saturable absorber mirror (SESAM) is used to achieve stable mode-locking around 1050 nm with pulse durations as short as 811 fs and an average power up to 27 mW. Different waveguide samples are also employed to deliver pulses with repetition rates of 4.9 GHz, 10.4 GHz and 12 GHz with an average power of 32 mW, 60 mW and 45 mW, respectively. The group velocity dispersion control in the cavity is provided by changing the gap between the SESAM and the waveguide end-face to facilitate a soliton mode-locking regime.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.7380) Optical devices : Waveguides, channeled
(320.7080) Ultrafast optics : Ultrafast devices
(130.2755) Integrated optics : Glass waveguides
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 17, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 6, 2013
Published: August 13, 2013

Alexander A. Lagatsky, Amol Choudhary, Pradeesh Kannan, David P. Shepherd, Wilson Sibbett, and Christian T. A. Brown, "Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz," Opt. Express 21, 19608-19614 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express11(8), 933–938 (2003). [CrossRef] [PubMed]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007). [CrossRef] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007). [CrossRef] [PubMed]
  4. Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36Tb/s spectral slicing source based on a Cr:YAG femtosecond laser,” J. Lightwave Technol.23(3), 1319–1324 (2005). [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000). [CrossRef] [PubMed]
  6. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  7. C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004). [CrossRef]
  8. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010). [CrossRef]
  9. J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm,” Opt. Express16(22), 17706–17713 (2008). [CrossRef] [PubMed]
  10. S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007). [CrossRef]
  11. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B14(1), 144–154 (1997). [CrossRef]
  12. A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010). [CrossRef]
  13. Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013). [CrossRef]
  14. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002). [CrossRef]
  15. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010). [CrossRef] [PubMed]
  16. J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proc. 16th Int. Conf. Ultrafast Phenomena XIV, Stresa, Lago Maggiore, Italy, 2008.
  17. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005). [CrossRef]
  18. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  19. H. W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37(17), 3522–3524 (2012). [CrossRef] [PubMed]
  20. H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009). [CrossRef]
  21. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett.37(21), 4416–4418 (2012). [CrossRef] [PubMed]
  22. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21(7), 7943–7950 (2013). [CrossRef] [PubMed]
  23. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000). [CrossRef]
  24. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999). [CrossRef]
  25. J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986). [CrossRef]
  26. L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited