OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19615–19623

Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth

Younghyun Kim, Masafumi Yokoyama, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19615-19623 (2013)
http://dx.doi.org/10.1364/OE.21.019615


View Full Text Article

Enhanced HTML    Acrobat PDF (2586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have numerically analyzed plasma dispersion effect in a Ge-rich SiGe layer for optical modulator applications. Since strain induces reduction in effective masses of electron and hole, we expect enhanced plasma dispersion effect in a strained Ge-rich SiGe layer. The plasma dispersion effects of Si0.15Ge0.85 on Si0.2Ge0.8 for hole and electron are expected to be approximately 3.0 and 1.5 times larger than those of Si. To realize Ge-rich SiGe-based waveguide optical modulators, we have also investigated the fabrication procedure of SiGe-on-insulator (SGOI) wafers. We have successfully fabricated Ge-rich SGOI wafers without any thick SiGe buffer layers by using Ge condensation in conjunction with the SiGe regrowth technique. We have evaluated the SGOI by Raman spectroscopy, atomic force microscopy (AFM), reflected high energy electron diffraction (RHEED) and transmission electron microscopy (TEM). Ge-rich SiGe waveguides have been fabricated on the SGOI wafer. The propagation loss was found to be approximately 13 dB/mm, which can be reduced to be below 2 dB/mm by optimizing the Ge condensation process. We expect that strained SiGe grown on the fabricated SGOI exhibits more than 2.3 times higher plasma dispersion than Si in case of a carrier injection type, suitable for high-performance waveguide optical modulators.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

History
Original Manuscript: May 29, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 1, 2013
Published: August 13, 2013

Citation
Younghyun Kim, Masafumi Yokoyama, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, "Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth," Opt. Express 21, 19615-19623 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E35(2), 223–228 (2006). [CrossRef]
  2. International Technology Roadmap for Semiconductors, (2011 Edition). Available: http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Interconnect.pdf
  3. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  4. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007). [CrossRef]
  5. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express13(8), 3129–3135 (2005). [PubMed]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  8. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron.48(2), 210–220 (2012). [CrossRef]
  9. M. Takenaka and S. Takagi, “Strain engineering of plasma dispersion effect for SiGe optical modulators,” IEEE J. Sel. Top. Quantum Electron.48(1), 8–16 (2012). [CrossRef]
  10. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys.80(4), 2234–2252 (1996). [CrossRef]
  11. K. C. Saraswat, C. O. Chui, D. Kim, T. Krishnamohan, and A. Pethe, “High mobility materials and novel device structures for high performance nanoscale MOSFETs,” Electron Devices Meeting,2006. IEDM '06. International.
  12. M. Oehme, J. Werner, O. Kirfel, and E. Kasper, “MBE growth of SiGe with high Ge content for optical applications,” Appl. Surf. Sci.254(19), 6238–6241 (2008). [CrossRef]
  13. T. Tezuka, N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi, “A Novel fabrication of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub-100 nm strained silicon-on-insulator MOSFETs,” Jpn. J. Appl. Phys.40(Part 1, No. 4B), 2866–2874 (2001). [CrossRef]
  14. T. Tezuka, N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi, “Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels,” IEEE Trans. Electron. Dev.50(5), 1328–1333 (2003). [CrossRef]
  15. S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, “Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique,” Appl. Phys. Lett.83(17), 3516–3518 (2003). [CrossRef]
  16. S. Balakumar, S. Peng, K. M. Hoe, G. Q. Lo, R. Kumar, N. Balasubramanian, D. L. Kwong, Y. L. Foo, and S. Tripathy, “Fabrication of thick SiGe on insulator (Si0.2Ge0.8OI) by condensation of SiGe/Si superlattice grown on silicon on insulator,” Appl. Phys. Lett.90(19), 192113 (2007). [CrossRef]
  17. S. Koh, K. Sawano, Y. Shiraki, N. Usami, K. Nakajima, X. Huang, and S. Uda, “Fabrication of p-i-n Si0.5Ge0.5 photodetctors on SiGe-on-Insulator Substrates,” 2004 first IEEE International Conference on Group IV Photonics.
  18. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Sel. Top. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  19. R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev.109(3), 695–710 (1958). [CrossRef]
  20. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates,” Phys. Rev. B Condens. Matter48(19), 14276–14287 (1993). [CrossRef] [PubMed]
  21. D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett.47(12), 1333–1335 (1985). [CrossRef]
  22. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Ka¨nel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1-xGex/Si heterostructures,” Mat. Sci. in Semi. Proc.11, 279–284 (2008).
  23. S. W. Bedell, K. Fogel, D. K. Sadana, and H. Chen, “Defects and strain relaxation in silicon-germanium-on-insulator formed by high-temperature oxidation,” Appl. Phys. Lett.85(24), 5869–5871 (2004). [CrossRef]
  24. Y. Zhang, K. Cai, C. Li, S. Chen, H. Lai, and J. Kang, “Strain relaxation in ultrathin SGOI substrates fabricated by multistep Ge condensation method,” J. Electrochem. Soc.156(2), H115–H118 (2009). [CrossRef]
  25. N. Hirashita, Y. Moriyama, S. Nakaharai, T. Irisawa, N. Sugiyama, and S. Takagi, “Deformation induced holes in Ge-rich SiGe-on-insulator and Ge-on-insulator substrates fabricated by Ge condensation process,” Appl. Phys. Express1, 101401 (2008). [CrossRef]
  26. Y. Moriyama, N. Hirashita, K. Usuda, S. Nakaharai, N. Sugiyama, E. Toyoda, and S. Takagi, “Study of the surface cleaning of GOI and SGOI substrates for Ge epitaxial growth,” Appl. Surf. Sci.256(3), 823–829 (2009). [CrossRef]
  27. J. Humlicek, F. Lukes, and E. Schmidt, “Silicon–germanium alloys (SixGe1−x),” in Handbook of Optical Constants of Solids II, E. D. Palik, Ed. (Academic, 1991), pp. 607–636.
  28. H. J. Stein, “Neutron-and proton-induced defects in SiGe alloys: optical absorption,” J. Appl. Phys.45(5), 1954–1961 (1974). [CrossRef]
  29. T. Tezuka, S. Nakaharai, Y. Moriyama, N. Sugiyama, and S. Takagi, “High-mobility strained SiGe-on-insulator pMOSFETs with Ge-rich surface channels fabricated by local condensation technique,” IEEE Electron Device Lett.26(4), 243–245 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited