OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19624–19633

Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters

Lawrence R. Chen, Jia Li, Mina Spasojevic, and Rhys Adams  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19624-19633 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the use of various silicon photonic device technologies to implement microwave photonic filters (MPFs). We demonstrate four-wave mixing in a silicon nanowire waveguide (SNW) to increase the number of taps for MPFs based on finite impulse response filter designs. Using a 12 mm long SNW reduces the footprint by five orders of magnitude compared to silica highly nonlinear fiber while only requiring approximately two times more input power. We also demonstrate optical delays based on serial sidewall Bragg grating arrays and step-chirped sidewall Bragg gratings in silicon waveguides. We obtain up to 63 ps delay in discrete steps from 15 ps to 32 ps over a wide bandwidth range from 33 nm to at least 62 nm. These components can be integrated with other silicon-based components such as integrated spectral shapers and modulators to realize a fully integrated MPF.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Microwave Photonics

Original Manuscript: May 31, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: August 7, 2013
Published: August 14, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Lawrence R. Chen, Jia Li, Mina Spasojevic, and Rhys Adams, "Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters," Opt. Express 21, 19624-19633 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013). [CrossRef]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006). [CrossRef]
  5. J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005). [CrossRef]
  6. J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006). [CrossRef]
  7. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010). [CrossRef]
  8. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010). [CrossRef]
  9. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Lasers & Photon. Rev. doi: . (2013). [CrossRef]
  10. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010). [CrossRef]
  11. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol.29(11), 1611–1619 (2011). [CrossRef]
  12. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20(17), 18836–18845 (2012). [CrossRef] [PubMed]
  13. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  14. B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012). [CrossRef]
  15. J. Li, R. Adams, Z. Saraç, D. Berardo, and L. R. Chen, “A reconfigurable microwave photonic filter based on four wave mixing in a silicon nanophotonic waveguide,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006). [CrossRef] [PubMed]
  17. M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]
  18. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008). [CrossRef] [PubMed]
  19. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010). [CrossRef]
  20. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33(24), 3013–3015 (2008). [CrossRef] [PubMed]
  21. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009). [CrossRef]
  22. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012). [CrossRef] [PubMed]
  23. E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4. [CrossRef]
  24. S. Khan and S. Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Opt. Express20(18), 19859–19867 (2012). [CrossRef] [PubMed]
  25. M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings serial grating arrays,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.
  26. M. Lipson, “Silicon photonics: the optical spice rack,” Electron. Lett.45(12), 576–577 (2009). [CrossRef]
  27. Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006). [CrossRef]
  28. L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited