OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19648–19656

Para-magneto- and electro-optic microcavities for blue wavelength modulation

Taichi Goto, Ryosuke Isogai, and M. Inoue  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19648-19656 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on microcavities comprising para-magnetic garnet and electro-optic films (MPMEO) for modulation of the polarization rotation angle of light at near-UV wavelengths with a slight intensity change, with applying a low voltage. The MPMEO are composed of para-magnetic garnet and electro-optic films sandwiched between two Bragg mirrors. The microcavity states in MPMEO are split and yield both the large rotation angle and high optical efficiency. Significant enhancement and modulation by applied voltages are verified through a conventional matrix calculation approach. High optical efficiency (>90%) and large modulation (~90 degree) of the polarization rotation are proved.

© 2013 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: April 22, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 7, 2013
Published: August 14, 2013

Taichi Goto, Ryosuke Isogai, and M. Inoue, "Para-magneto- and electro-optic microcavities for blue wavelength modulation," Opt. Express 21, 19648-19656 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, L. Yi-Qun, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002). [CrossRef]
  2. T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express20(27), 28507–28517 (2012). [CrossRef] [PubMed]
  3. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  4. M. Inoue, A. B. Khanikaev, and A. B. Baryshev, Nanoscale Magnetic Materials and Applications (Springer, 2009).
  5. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011). [CrossRef] [PubMed]
  6. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express19(16), 15181–15187 (2011). [CrossRef] [PubMed]
  7. S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B12(7), 2777–2788 (1975). [CrossRef]
  8. M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth267(1-2), 188–193 (2004). [CrossRef]
  9. M. Inoue, R. Fujikawa, A. V. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D39(8), R151–R161 (2006). [CrossRef]
  10. A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn.32(2_2), 140–145 (2008). [CrossRef]
  11. M. Levy and R. Li, “Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals,” Appl. Phys. Lett.89(12), 121113 (2006). [CrossRef]
  12. K. Yamada, T. Goto, Y. Suzuki, H. Sato, A. Kume, S. Mito, H. Takagi, and M. Inoue, “Fabrication of magnetophotonic crystals with paramagnetic garnet films,” J. Magn. Soc. Jpn.35(3), 199–202 (2011). [CrossRef]
  13. T. Goto, H. Sato, H. Takagi, A. V. Baryshev, and M. Inoue, “Novel magnetophotonic crystals controlled by the electro-optic effect for non-reciprocal high-speed modulators,” J. Appl. Phys.109(7), 07B756 (2011). [CrossRef]
  14. T. Goto, R. Hashimoto, R. Isogai, Y. Suzuki, R. Araki, H. Takagi, and M. Inoue, “Fabrication of Microcavity with Magneto- and Electro-Optical Film,” J. Magn. Soc. Jpn.36(3), 197–201 (2012). [CrossRef]
  15. Y. S. Dadoenkova, I. L. Lyubachanskii, Y. P. Lee, and T. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010). [CrossRef]
  16. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003). [CrossRef]
  17. N. Itoh, Y. Kawabata, M. Koden, S. Miyoshi, T. Numao, M. Shigeta, M. Sugino, M. J. Bradshaw, C. V. Brown, A. Graham, S. D. Haslam, J. R. Hughes, J. C. Jones, D. G. McDonnell, A. J. Slaney, P. Bonnett, P. A. Gass, E. P. Rayens, and D. Ulrich, “17-in. video-rate full-color FLCD,” Journal of ITE53(8), 1136–1141 (1999). [CrossRef]
  18. C. Greenlee, J. Luo, K. Leedy, B. Bayraktaroglu, R. A. Norwood, M. Fallahi, A. K. Y. Jen, and N. Peyghambarian, “Electro-optic polymer spatial light modulator based on a Fabry-Perot interferometer configuration,” Opt. Express19(13), 12750–12758 (2011). [CrossRef] [PubMed]
  19. K. Iwasaki, H. Mochizuki, H. Umezawa, and M. Inoue, “Practical magneto-optic spatial light modulator with single magnetic domain pixels,” IEEE Trans. Magn.44(11), 3296–3299 (2008). [CrossRef]
  20. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys.93(7), 3906–3911 (2003). [CrossRef]
  21. U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182, K91–K93 (1994).
  22. F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B94(3), 437–441 (2009). [CrossRef]
  23. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys.36(5), 1674–1677 (1965). [CrossRef]
  24. Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Gunter, “Stoichiometric LiTaO3 for dynamic holography in Near UV wavelength range,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1816–1819 (1999). [CrossRef]
  25. A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  26. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalate at near-infrared wavelengths,” J. Opt. Soc. Am. B21(11), 1948–1952 (2004). [CrossRef]
  27. S. Kase and K. Ohi, “Optical absorption and interband Faraday rotation in LiTaO3 and LiNbO3,” Ferroelectrics8(1), 419–420 (1974). [CrossRef]
  28. T. Goto and M. Inoue, “Magnetophotonic crystal comprising electro-optical layer for controlling helicity of light,” J. Appl. Phys.111(7), 07A913 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited