OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19675–19680

Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial

Fuli Zhang, Qian Zhao, Ji Zhou, and Shengxiang Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19675-19680 (2013)
http://dx.doi.org/10.1364/OE.21.019675


View Full Text Article

Enhanced HTML    Acrobat PDF (1426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this manuscript, we demonstrate numerically classical analogy of electromagnetically induced transparency (EIT) with a windmill type metamaterial consisting of two dumbbell dielectric resonator. With proper external excitation, dielectric resonators serve as EIT bright and dark elements via electric and magnetic Mie resonances, respectively. Rigorous numerical analyses reveal that dielectric metamaterial exhibits sharp transparency peak characterized by large group index due to the destructive interference between EIT bright and dark resonators. Furthermore, such EIT transmission behavior keeps stable property with respect to polarization and incidence angles.

© 2013 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials
(230.4555) Optical devices : Coupled resonators

ToC Category:
Metamaterials

History
Original Manuscript: June 1, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: July 28, 2013
Published: August 14, 2013

Citation
Fuli Zhang, Qian Zhao, Ji Zhou, and Shengxiang Wang, "Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial," Opt. Express 21, 19675-19680 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  2. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  3. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  4. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011). [CrossRef]
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  6. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett.109(18), 187401 (2012). [CrossRef] [PubMed]
  7. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36 (1997). [CrossRef]
  8. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012). [CrossRef]
  9. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  10. W. Cao, R. Singh, I. A. IAl-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q darkmode plasmonic fano metamaterials,” Opt. Lett.37, 3366 (2012).
  11. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79(8), 085111 (2009). [CrossRef]
  12. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B80(15), 153103 (2009). [CrossRef]
  13. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011). [CrossRef] [PubMed]
  14. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011). [CrossRef]
  15. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun.3, 1151 (2012). [CrossRef]
  16. J. Shao, J. Li, J. Li, Y.-K. Wang, Z.-G. Dong, P. Chen, R.-X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett.102(3), 034106 (2013). [CrossRef]
  17. A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express19(23), 22607–22618 (2011). [CrossRef] [PubMed]
  18. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  19. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011). [CrossRef] [PubMed]
  20. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett.101(2), 027402 (2008). [CrossRef] [PubMed]
  21. F. Zhang, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Magnetic and electric coupling effects of dielectric metamaterial,” New J. Phys.14(3), 033031 (2012). [CrossRef]
  22. B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett.100(20), 207401 (2008). [CrossRef] [PubMed]
  23. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98(15), 157403 (2007). [CrossRef] [PubMed]
  24. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012). [CrossRef] [PubMed]
  25. C.-K. Chen, Y.-C. Lai, Y.-H. Yang, C.-Y. Chen, and T.-J. Yen, “Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials,” Opt. Express20(7), 6952–6960 (2012). [CrossRef] [PubMed]
  26. M. N. Afsar and H. Ding, “A novel open-resonator system for precise measurement of permittivity and loss-tangent,” IEEE Trans. Instrum. Meas.50(2), 402–405 (2001). [CrossRef]
  27. H. Němec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett.100(6), 061117 (2012). [CrossRef]
  28. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004). [CrossRef] [PubMed]
  29. F. Ponchel, X. Lei, D. Rémiens, G. Wang, and X. Dong, “Microwave evaluation of Pb0.4Sr0.6TiO3 thin films prepared by magnetron sputtering on silicon: performance comparison with Ba0.3Sr0.7TiO3 thin films,” Appl. Phys. Lett.99(17), 172905 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited