OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19690–19700

Self-trapped leaky waves in lattices: discrete and Bragg soleakons

Maxim Kozlov, Ofer Kfir, and Oren Cohen  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19690-19700 (2013)
http://dx.doi.org/10.1364/OE.21.019690


View Full Text Article

Enhanced HTML    Acrobat PDF (1690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose lattice soleakons: self-trapped waves that self-consistently populate slowly-attenuating leaky modes of their self-induced defects in periodic potentials. Two types, discrete and Bragg, lattice soleakons are predicted. Discrete soleakons that are supported by combination of self-focusing and self-defocusing nonlinearities propagate robustly for long propagation distances. They eventually abruptly disintegrate because they emit power to infinity at an increasing pace. In contrast, Bragg soleakons self-trap by only self-focusing nonlinearity. Also, they do not disintegrate because they emit power at a decreasing rate.

© 2013 OSA

OCIS Codes
(190.5940) Nonlinear optics : Self-action effects
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 30, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: July 15, 2013
Published: August 14, 2013

Citation
Maxim Kozlov, Ofer Kfir, and Oren Cohen, "Self-trapped leaky waves in lattices: discrete and Bragg soleakons," Opt. Express 21, 19690-19700 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Ovchinnikov, “Localized long-lived vibrational states in molecular crystals,” Zh. Exp. Theor. Phys.57, 263–270 (1969).
  2. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett.42(25), 1698–1701 (1979). [CrossRef]
  3. A. J. Sievers and S. Takeno, “Intrinsic localized modes in anharmonic crystals,” Phys. Rev. Lett.61(8), 970–973 (1988). [CrossRef] [PubMed]
  4. A. S. Davydov, “The theory of contraction of proteins under their excitation,” J. Theor. Biol.38(3), 559–569 (1973). [CrossRef] [PubMed]
  5. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett.58(2), 160–163 (1987). [CrossRef] [PubMed]
  6. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett.13(9), 794–796 (1988). [CrossRef] [PubMed]
  7. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett.62(15), 1746–1749 (1989). [CrossRef] [PubMed]
  8. J. Feng, “Alternative scheme for studying gap solitons in an infinite periodic Kerr medium,” Opt. Lett.18(16), 1302–1304 (1993). [CrossRef] [PubMed]
  9. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Observation of mutually trapped multiband optical breathers in waveguide arrays,” Phys. Rev. Lett.90(25), 253902 (2003). [CrossRef] [PubMed]
  10. J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express13(6), 1780–1796 (2005). [CrossRef] [PubMed]
  11. M. Sato, B. E. Hubbard, and A. J. Sievers, “Colloquium: Nonlinear energy localization and its manipulation in micromechanical oscillator arrays,” Rev. Mod. Phys.78(1), 137–157 (2006). [CrossRef]
  12. E. Kenig, B. A. Malomed, M. C. Cross, and R. Lifshitz, “Intrinsic localized modes in parametrically driven arrays of nonlinear resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(4), 046202 (2009). [CrossRef] [PubMed]
  13. E. Trías, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in a josephson array,” Phys. Rev. Lett.84(4), 741–744 (2000). [CrossRef] [PubMed]
  14. N. K. Efremidis and D. N. Christodoulidis, “Lattice solitons in Bose-Einstein condensates,” Phys. Rev. A67(6), 063608 (2003). [CrossRef]
  15. B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K. P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett.92(23), 230401 (2004). [CrossRef] [PubMed]
  16. F. Bloch, “Über die quantenmechanik der elektronen in kristallgittern,” Z. Phys.52, 555–600 (1928).
  17. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett.81(16), 3383–3386 (1998). [CrossRef]
  18. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett.90(2), 023902 (2003). [CrossRef] [PubMed]
  19. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003). [CrossRef] [PubMed]
  20. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett.28(9), 710–712 (2003). [CrossRef] [PubMed]
  21. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett.92(12), 123902 (2004). [CrossRef] [PubMed]
  22. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete propagation and spatial solitons in nematic liquid crystals,” Opt. Lett.29(13), 1530–1532 (2004). [CrossRef] [PubMed]
  23. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett.92(9), 093904 (2004). [CrossRef] [PubMed]
  24. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, “Two-dimensional optical lattice solitons,” Phys. Rev. Lett.91(21), 213906 (2003). [CrossRef] [PubMed]
  25. S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, “Long-range interaction and nonlinear localized modes in photonic crystal waveguides,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(44 Pt B), 5777–5782 (2000). [CrossRef] [PubMed]
  26. O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett.91(11), 113901 (2003). [CrossRef] [PubMed]
  27. A. A. Sukhorukov and Y. S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett.91(11), 113902 (2003). [CrossRef] [PubMed]
  28. H. Buljan, O. Cohen, J. W. Fleischer, T. Schwartz, M. Segev, Z. H. Musslimani, N. K. Efremidis, and D. N. Christodoulides, “Random-phase solitons in nonlinear periodic lattices,” Phys. Rev. Lett.92(22), 223901 (2004). [CrossRef] [PubMed]
  29. O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005). [CrossRef] [PubMed]
  30. O. Peleg, Y. Plotnik, N. Moiseyev, O. Cohen, and M. Segev, “Self-trapped leaky waves and their interactions,” Phys. Rev. A80(4), 041801 (2009). [CrossRef]
  31. N. Moiseyev, P. R. Certain, and F. Weinhold, “Resonance properties of complex-rotated hamiltonians,” Mol. Phys.36(6), 1613–1630 (1978). [CrossRef]
  32. H. C. Gurgov and O. Cohen, “Spatiotemporal pulse-train solitons,” Opt. Express17(9), 7052–7058 (2009). [CrossRef] [PubMed]
  33. I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett.102(20), 203903 (2009). [CrossRef] [PubMed]
  34. O. Lahav, H. C. Gurgov, P. Sidorenko, O. Peleg, L. Levi, A. Fleischer, and O. Cohen, “Self-phase modulation spectral broadening in two-dimensional spatial solitons: toward three-dimensional spatiotemporal pulse-train solitons,” Opt. Lett.37(24), 5196–5198 (2012). [CrossRef] [PubMed]
  35. S. Giovanazzi, A. Gorlitz, and T. Pfau, “Ballistic expansion of a dipolar condensate,” J. Opt. B5(2), S208–S211 (2003). [CrossRef]
  36. A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose-Einstein condensate,” Phys. Rev. Lett.97(25), 250402 (2006). [CrossRef] [PubMed]
  37. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  38. A. R. Champneys, B. A. Malomed, and M. J. Friedman, “Thirring solitons in the presence of dispersion,” Phys. Rev. Lett.80(19), 4169–4172 (1998). [CrossRef]
  39. J. Yang, B. A. Malomed, and D. J. Kaup, “Embedded solitons in second-harmonic-generating systems,” Phys. Rev. Lett.83(10), 1958–1961 (1999). [CrossRef]
  40. J. Yang, “Fully localized two-dimensional embedded solitons,” Phys. Rev. A82(5), 053828 (2010). [CrossRef]
  41. X. Wang, Z. Chen, J. Wang, and J. Yang, “Observation of in-band lattice solitons,” Phys. Rev. Lett.99(24), 243901 (2007). [CrossRef] [PubMed]
  42. G. Agraval, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited