OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19709–19717

Directional terahertz emission from corrugated InAs structures

Jong-Hyuk Yim, Hoonil Jeong, Muhammad Irfan, Eun-Hye Lee, Jin-Dong Song, and Young-Dahl Jho  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19709-19717 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2065 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The terahertz (THz) radiation from transient dipoles, formed by distinct diffusion coefficients between oppositely charged carriers as often observed in low band gap semiconductors, propagates with an anisotropic amplitude distribution perpendicular to the dipole axis along the diffusive motion. By directionally adjusting the electronic diffusion, we conceptualize groove-patterned THz emitters based on (100) InAs thin films and demonstrate the unidirectional radiation. Line-of-sight emission along the surface-normal direction is greatly enhanced in a distributed asymmetric trapezoid with its period similar to the electronic diffusion length of InAs. This directional enhancement is in clear contrast to the constant emission amplitude along the lateral direction, regardless of pattern scale, which manifests the role of groove patterns as microscale reflectors in laterally corrugating the carrier density. In contrast to the rather limited nonlinearity in (100) plane, the azimuthal angle dependence of the THz field amplitude in corrugated samples shows a combined effect of diffusive transport and second-order nonlinearity, whose compositional contributions varies in different structures.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: July 1, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 2, 2013
Published: August 14, 2013

Jong-Hyuk Yim, Hoonil Jeong, Muhammad Irfan, Eun-Hye Lee, Jin-Dong Song, and Young-Dahl Jho, "Directional terahertz emission from corrugated InAs structures," Opt. Express 21, 19709-19717 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, e.g., P. Gu and M. Tani, “Terahertz radiation from semiconductor surfaces,” in Terahertz Optoelectronics, K. Sakai, eds. (Springer, 2005), pp. 63–97. [CrossRef]
  2. K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006). [CrossRef]
  3. K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008). [CrossRef]
  4. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002). [CrossRef]
  5. D. -F. Liu and D. Xu, “Comparative study of terahertz radiation from n-InAs and n-GaAs,” Appl. Opt.46(5), 789–794 (2007). [CrossRef] [PubMed]
  6. P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002). [CrossRef]
  7. H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012). [CrossRef]
  8. M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005). [CrossRef]
  9. Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008). [CrossRef]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007). [CrossRef]
  11. See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009). [CrossRef]
  12. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010). [CrossRef] [PubMed]
  13. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011). [CrossRef]
  14. C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007). [CrossRef]
  15. M. Yi, K. Lee, J. Lim, Y. Hong, Y. D. Jho, and J. Ahn, “Terahertz waves emitted from an optical fiber,” Opt. Express18(13), 13693–13699 (2010). [CrossRef] [PubMed]
  16. A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002). [CrossRef] [PubMed]
  17. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express16(21), 17039–17051 (2008). [CrossRef] [PubMed]
  18. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010). [CrossRef]
  19. J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013). [CrossRef]
  20. Y. -S. Lee, Principle of Terahertz Science and Technology (Springer, 2009), pp. 21–24.
  21. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009). [CrossRef]
  22. I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010). [CrossRef]
  23. See, e.g., M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  24. R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004). [CrossRef]
  25. M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005). [CrossRef]
  26. D. H. McMahon, W. A. Dyes, R. F. Cooper, W. C. Robinson, and A. Mahapatra, “Echelon grating multiplexers for hierarchically multiplexed fiber-optic communication networks,” Appl. Opt.26(11), 2188–2196 (1987). [CrossRef] [PubMed]
  27. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited