OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19790–19798

The multiparty coherent channel and its implementation with linear optics

Guangqiang He, Taizhi Liu, and Xin Tao  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19790-19798 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The continuous-variable coherent (conat) channel is a useful resource for coherent communication, supporting coherent teleportation and coherent superdense coding. We extend the conat channel to multiparty conditions by proposing definitions on multiparty position-quadrature and momentum-quadrature conat channel. We additionally provide two methods to implement this channel using linear optics. One method is the multiparty version of coherent communication assisted by entanglement and classical communication (CCAECC). The other is multiparty coherent superdense coding.

© 2013 OSA

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: May 16, 2013
Revised Manuscript: June 22, 2013
Manuscript Accepted: June 24, 2013
Published: August 15, 2013

Guangqiang He, Taizhi Liu, and Xin Tao, "The multiparty coherent channel and its implementation with linear optics," Opt. Express 21, 19790-19798 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Harrow, “Coherent communication of classical messages,” Phys. Rev. Lett.92, 097902 (2004). [CrossRef] [PubMed]
  2. M. M. Wilde, T. A. Brun, J. P. Dowling, and H. Lee, “Coherent communication with linear optics,” Phys. Rev. A77, 022321 (2008). [CrossRef]
  3. M. M. Wilde, H. Krovi, and T. A. Brun, “Coherent communication with continuous quantum variables,” Phys. Rev. A75,060303(R) (2007). [CrossRef]
  4. I. Devetak, “Triangle of dualities between quantum communication protocols,” Phys. Rev. Lett.97, 140503 (2006). [CrossRef] [PubMed]
  5. T. A. Brun, I. Devetak, and M-H Hsieh, “Correcting quantum errors with entanglement,” Science314, 436–439 (2006). [CrossRef] [PubMed]
  6. T. A. Brun, I. Devetak, and M-H Hsieh, “Catalytic quantum error correction,” arXiv:quant-ph/0608027 (2006).
  7. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777 (1935). [CrossRef]
  8. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe (1989).
  9. P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett.84, 3482 (2000). [CrossRef] [PubMed]
  10. R. Filip, P. Marek, and U. L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A71, 042308 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited