OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19808–19815

Self-supporting polymer pipes for low loss single-mode THz transmission

Mingfei Xiao, Jing Liu, Wei Zhang, Jingling Shen, and Yidong Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19808-19815 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a self-supporting polymer pipe is proposed and investigated for THz wave transmission. Utilizing fiber drawing technique for polymer fiber, self-supporting pipes with wall thickness of several tens micrometers can be fabricated using polymethylmethacrylate (PMMA). The guiding mechanism and transmission characteristics of the self-supporting pipes are investigated theoretically, showing that it can support single-mode transmission at THz band. The self-supporting pipe samples with different structure parameters are fabricated and measured experimentally, showing that it can support single HE11 mode transmission. Theoretical analysis and experimental results show that this self-supporting polymer pipe is a promising candidate for low loss THz fibers.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 18, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 6, 2013
Published: August 15, 2013

Mingfei Xiao, Jing Liu, Wei Zhang, Jingling Shen, and Yidong Huang, "Self-supporting polymer pipes for low loss single-mode THz transmission," Opt. Express 21, 19808-19815 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002). [CrossRef]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  4. W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, “Hidden object detection: security applications of terahertz technology,” Proc. SPIE5354, 168–176 (2004). [CrossRef]
  5. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  6. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000). [CrossRef]
  7. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008). [CrossRef]
  8. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  9. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol.23(8), 2469–2473 (2005). [CrossRef]
  10. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett.36(5), 666–668 (2011). [CrossRef] [PubMed]
  11. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express20(28), 29507–29517 (2012). [CrossRef] [PubMed]
  12. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  13. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express18(13), 13813–13828 (2010). [CrossRef] [PubMed]
  14. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011). [CrossRef] [PubMed]
  15. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  16. A. Mazhorova, A. Markov, B. Ung, M. Roze, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B29(8), 2116–2123 (2012). [CrossRef]
  17. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011). [CrossRef] [PubMed]
  18. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett.34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  19. E. Nguema, D. Férachou, G. Humbert, J. L. Auguste, and J. M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011). [CrossRef] [PubMed]
  20. M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun.298, 101–105 (2013). [CrossRef]
  21. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  22. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol.29(1), 97–103 (2011). [CrossRef]
  23. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” Appl. Phys. Lett.109(4), 043505 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited