OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19867–19879

Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals

Weiwei Tie, Surjya Sarathi Bhattacharyya, Young Jin Lim, Sang Won Lee, Tae Hoon Lee, Young Hee Lee, and Seung Hee Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19867-19879 (2013)
http://dx.doi.org/10.1364/OE.21.019867


View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electric field induced dynamic reorientation phenomenon of graphene/graphitic flakes in homogeneously aligned nematic liquid crystal (NLC) medium has been demonstrated by optical microscopy. The flakes reorient from parallel to perpendicular configuration with respect to boundary plates of confining cells for an applied field strength of as low as tens of millivolt per micrometer. After field removal the reoriented flakes recover to their initial state with the help of relaxation of NLC. Considering flake reorientation phenomenon both in positive and negative dielectric anisotropy NLCs, the reorientation process depends on interfacial Maxwell–Wagner polarization and NLC director reorientation. We propose a phenomenological model based on electric field induced potential energy of graphitic flakes and coupling contribution of positive NLC to generate the rotational kinetic energy for flake reorientation. The model successfully explains the dependence of flake reorientation time over flake shape anisotropy, electric-field strength, and flake area. Using present operating scheme it is possible to generate dark field-off state and bright field-on state, having application potential for electro-optic light modulation devices.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.3710) Materials : Liquid crystals
(230.2090) Optical devices : Electro-optical devices
(160.4236) Materials : Nanomaterials
(250.6715) Optoelectronics : Switching

ToC Category:
Holography

History
Original Manuscript: April 22, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: August 7, 2013
Published: August 16, 2013

Citation
Weiwei Tie, Surjya Sarathi Bhattacharyya, Young Jin Lim, Sang Won Lee, Tae Hoon Lee, Young Hee Lee, and Seung Hee Lee, "Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals," Opt. Express 21, 19867-19879 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N.  Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001). [CrossRef]
  2. T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005). [CrossRef]
  3. T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002). [CrossRef] [PubMed]
  4. T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004). [CrossRef]
  5. A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005). [CrossRef]
  6. A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  7. P.  Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010). [CrossRef] [PubMed]
  8. F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  9. P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008). [CrossRef] [PubMed]
  10. K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005). [CrossRef] [PubMed]
  11. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  12. J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007). [CrossRef] [PubMed]
  13. I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004). [CrossRef]
  14. W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011). [CrossRef]
  15. O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010). [CrossRef] [PubMed]
  16. Q.  Liu, T.  Asavei, T.  Lee, H.  Rubinsztein-Dunlop, S.  He, I. I.  Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011). [CrossRef] [PubMed]
  17. C. W.  Twombly, J. S.  Evans, I. I.  Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21(1), 1324–1334 (2013). [CrossRef] [PubMed]
  18. M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010). [CrossRef]
  19. N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010). [CrossRef] [PubMed]
  20. S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011). [CrossRef]
  21. J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011). [CrossRef] [PubMed]
  22. B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011). [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory, International Series in Physics, 1st ed. (McGraw-Hill, New York, 1941).
  24. F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970). [CrossRef]
  25. C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007). [CrossRef]
  26. R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited