OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20015–20022

Strong confinement of light in low index materials: the Photon Cage

Clément Sieutat, Romain Peretti, Jean-Louis Leclercq, Pierre Viktorovitch, and Xavier Letartre  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20015-20022 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4035 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New photonic microstructures are proposed for an efficient light trapping in low index media. Cylindrical hollow cavities formed by bending a photonic crystal membrane are designed. Using numerical simulations, strong confinement of photons is demonstrated for very open resonators. The resulting strong light matter interaction can be exploited in optical devices comprising an active material embedded in a low index matrix like polymer or even gaz.

© 2013 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 16, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: July 22, 2013
Published: August 19, 2013

Clément Sieutat, Romain Peretti, Jean-Louis Leclercq, Pierre Viktorovitch, and Xavier Letartre, "Strong confinement of light in low index materials: the Photon Cage," Opt. Express 21, 20015-20022 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  2. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003). [CrossRef]
  3. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79(18), 2865–2868 (2001). [CrossRef]
  4. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A75(5), 053823 (2007). [CrossRef]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  6. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett.98(2), 023304 (2011). [CrossRef]
  7. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  8. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89(24), 241114 (2006). [CrossRef]
  9. Y. Zhang, I. Bulu, W. M. Tam, B. Levitt, J. Shah, T. Botto, and M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express19(10), 9371–9377 (2011). [CrossRef] [PubMed]
  10. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2(12), 1449–1452 (2002). [CrossRef]
  11. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  12. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003). [CrossRef] [PubMed]
  13. S. A. Dyakov, A. Baldycheva, T. S. Perova, G. V. Li, E. V. Astrova, N. A. Gippius, and S. G. Tikhodeev, “Surface states in the optical spectra of two-dimensional photonic crystals with various surface terminations,” Phys. Rev. B86(11), 115126 (2012). [CrossRef]
  14. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  15. I. S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett.97(15), 151113 (2010). [CrossRef]
  16. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express15(19), 12443–12449 (2007). [CrossRef] [PubMed]
  17. C. Sieutat, J. L. Leclercq, X. Letartre, S. Callard, M. Gendry, G. Grenet, K. Naji, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, G. Beaudin, M. Cloutier, D. Drouin, and V. Aimez, “3D harnessing of light with photon cage,” Proc. SPIE7712, 77120E (2010).
  18. X. Letartre, P. Viktorovitch, C. Sciancalepore, T. Benyattou, and B. Ben Bakir, “Surface Addressable Photonic Crystal Resonators: General Design Rules and Applications,” Proceedings of the 14th International Conference on Transparent Optical Network (ICTON), 124–127 (2012). [CrossRef]
  19. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008). [CrossRef]
  20. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008). [CrossRef]
  21. V. Y. Prinz, D. Grützmacher, A. Beyer, C. David, B. Ketterer, and E. Deckardt, “A new technique for fabricating three-dimensional micro- and nanostructures of various shapes,” Nanotechnology12(4), 399–402 (2001). [CrossRef]
  22. C. Sieutat, C. Chevalier, A. Danescu, G. Grenet, P. Regreny, P. Viktorovitch, X. Letartre, and J. L. Leclercq, “3D optical micro-resonators by curving nanostructures using intrinsic stress,” Proc. SPIE8425, 842519 (2012). [CrossRef]
  23. A. Danescu, C. Chevalier, G. Grenet, P. Regreny, X. Letartre, and J. L. Leclercq, “Spherical curves design for micro-origami using intrinsic stress relaxation,” Appl. Phys. Lett.102(12), 123111 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited