OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20041–20051

Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators

Fei Lou, Daoxin Dai, Lars Thylen, and Lech Wosinski  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20041-20051 (2013)
http://dx.doi.org/10.1364/OE.21.020041


View Full Text Article

Enhanced HTML    Acrobat PDF (2431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators are proposed, simulated and analyzed. Comparing with Si slot microring modulator, hybrid plasmonic microring modulator shows about 6-times enhancement of the figure of merit when the bending radius is around 510 nm, due to its much larger intrinsic quality factor in sub-micron radius range. Influences of the EO polymer height and Si height on the device’s performance are analyzed and optimal design is given. When operating with a bias of 3.6V, the proposed device has optical modulation amplitude of 0.8 and insertion loss of about 1 dB. The estimated power consumption is about 5 fJ/bit at100 GHz.

© 2013 Optical Society of America

OCIS Codes
(250.2080) Optoelectronics : Polymer active devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: May 31, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: August 4, 2013
Published: August 19, 2013

Citation
Fei Lou, Daoxin Dai, Lars Thylen, and Lech Wosinski, "Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators," Opt. Express 21, 20041-20051 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  3. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett.30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  4. P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett.97(7), 073110 (2010). [CrossRef]
  5. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  6. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112.
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  8. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  9. Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental Realization of a Low-loss Nano-scale Si Hybrid Plasmonic Waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017. [CrossRef]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  11. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express21(4), 4728–4733 (2013). [CrossRef] [PubMed]
  12. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett.102(10), 101106 (2013). [CrossRef]
  13. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012). [CrossRef]
  14. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  15. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett.35(19), 3153–3155 (2010). [CrossRef] [PubMed]
  16. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012). [CrossRef] [PubMed]
  17. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012). [CrossRef] [PubMed]
  18. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012). [CrossRef] [PubMed]
  19. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  20. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  21. L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE5935, 593502 (2005). [CrossRef]
  22. S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett.96(24), 243311 (2010). [CrossRef]
  23. R. Dinu, D. Jin, G. Yu, B. Chen, D. Huang, H. Chen, A. Barklund, E. Miller, C. Wei, and J. Vemagiri, “Environmental stress testing of electro-optic polymer modulators,” J. Lightwave Technol.27(11), 1527–1532 (2009). [CrossRef]
  24. D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE7599, 75990H (2010). [CrossRef]
  25. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  26. M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an Electro-Optic Modulator Based on a Silicon-Plasmonic Hybrid Phase Shifter,” J. Lightwave Technol.31(8), 1170–1177 (2013). [CrossRef]
  27. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt.50(20), 3428–3434 (2011). [CrossRef] [PubMed]
  28. Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett.33(6), 551–553 (2008). [CrossRef] [PubMed]
  29. F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE8781, 87810X (2013). [CrossRef]
  30. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express20(3), 2507–2515 (2012). [CrossRef] [PubMed]
  31. H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems2(2), 154–168 (2012). [CrossRef]
  32. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4F.2. [CrossRef]
  33. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  34. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011). [CrossRef] [PubMed]
  35. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  36. C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet,” Proc. European Conf. on Optical Communication (ECOC), Paper P056 (2007). [CrossRef]
  37. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  38. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol.27(4), 440–448 (2009). [CrossRef]
  39. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  40. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007). [CrossRef] [PubMed]
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  42. S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express20(22), 24918–24924 (2012). [CrossRef] [PubMed]
  43. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40(10), 1511–1518 (2004). [CrossRef]
  44. X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011). [CrossRef] [PubMed]
  45. R. Ding, T. Baehr-Jones, W. Kim, A. Spott, M. Fournier, J. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth,” J. Lightwave Technol.29(8), 1112–1117 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited