OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20062–20072

Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber

Minwan Jung, Joonhoi Koo, Jaehyun Park, Yong-Won Song, Young Min Jhon, Kwanil Lee, Sangbae Lee, and Ju Han Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20062-20072 (2013)
http://dx.doi.org/10.1364/OE.21.020062


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber. Second, the measurement accuracy issue in obtaining a precise pulse-width value by use of an autocorrelator together with a silica fiber-based 2 μm-band amplifier was investigated. It showed that the higher-order soliton compression effect caused by the combination of anomalous dispersion and Kerr nonlinearity can provide incorrect pulse-width information. Third, an experimental investigation into the precise role of the graphene oxide-deposited side-polished fiber was carried out to determine whether its polarization-dependent loss (PDL) can be a substantial contributor to mode-locking through nonlinear polarization rotation. By comparing its performance with that of a gold-deposited side-polished fiber, the PDL contribution to mode-locking was found to be insignificant, and the dominant mode-locking mechanism was shown to be saturable absorption due to mutual interaction between the evanescent field of the oscillated beam and the deposited graphene oxide particles.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4236) Materials : Nanomaterials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 5, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 29, 2013
Published: August 19, 2013

Citation
Minwan Jung, Joonhoi Koo, Jaehyun Park, Yong-Won Song, Young Min Jhon, Kwanil Lee, Sangbae Lee, and Ju Han Lee, "Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber," Opt. Express 21, 20062-20072 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20062


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997). [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).
  3. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt.50(14), 2098–2111 (2011). [CrossRef] [PubMed]
  4. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  5. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998). [CrossRef] [PubMed]
  6. K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012). [CrossRef] [PubMed]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  8. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  10. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009). [CrossRef]
  11. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012). [CrossRef]
  12. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012). [CrossRef]
  13. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012). [CrossRef] [PubMed]
  14. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012). [CrossRef]
  15. J. Liu, S. Wu, J. Xu, Q. Wang, Q.-H. Yang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in Proc. CLEO, JW2A.76 (2012).
  16. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  17. Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012). [CrossRef]
  18. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).
  19. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express21(10), 12797–12802 (2013). [CrossRef] [PubMed]
  20. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013). [CrossRef]
  21. S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011). [CrossRef]
  22. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett.37(13), 2466–2468 (2012). [CrossRef] [PubMed]
  23. L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012). [CrossRef] [PubMed]
  24. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express20(26), B124–B130 (2012). [CrossRef] [PubMed]
  25. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010). [CrossRef] [PubMed]
  26. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012). [CrossRef] [PubMed]
  27. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013). [CrossRef]
  28. http://www.thorlabs.com/Thorcat/21000/SM2000-SpecSheet.pdf
  29. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–808 (1992). [CrossRef]
  30. P. Lazaridis, G. Debarge, and P. Gallion, “Time-bandwidth product of chirped sech2 pulses: application to phase-amplitude-coupling factor measurement,” Opt. Lett.20(10), 1160–1162 (1995). [CrossRef] [PubMed]
  31. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992). [CrossRef]
  32. L. W. Liou and G. P. Agrawal, “Effect of frequency chirp on soliton spectral sidebands in fiber lasers,” Opt. Lett.20(11), 1286–1288 (1995). [CrossRef] [PubMed]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, 2007).
  34. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010). [CrossRef]
  35. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007). [CrossRef] [PubMed]
  36. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express18(21), 22141–22146 (2010). [CrossRef] [PubMed]
  37. D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett.18(12), 1025–1027 (1993). [CrossRef] [PubMed]
  38. J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20(4), 3556–3562 (2012). [CrossRef] [PubMed]
  39. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited