OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20119–20130

Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds

Md. Rajibur Rahaman Khan, Byoung-Ho Kang, Sang-Won Lee, Su-Hwan Kim, Se-Hyuk Yeom, Seung-Ha Lee, and Shin-Won Kang  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20119-20130 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we proposed a new type high sensitive volatile organic compounds (VOCs) gas sensor array that is based on the pulse width modulation technique. Four different types of solvatochromic dyes and two different types of polymers, were used to make the five different types of sensing membranes. These were deposited on the five side-polished optical fibers by a spin coater to make the five different sensing elements of the array. In order to ascertain the effectiveness of the sensors, five VOC gases were tested. Finally, principal component analysis (PCA) has been used to discriminates different types of VOCs.

© 2013 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors

ToC Category:

Original Manuscript: April 24, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 7, 2013
Published: August 20, 2013

Md. Rajibur Rahaman Khan, Byoung-Ho Kang, Sang-Won Lee, Su-Hwan Kim, Se-Hyuk Yeom, Seung-Ha Lee, and Shin-Won Kang, "Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds," Opt. Express 21, 20119-20130 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Indoor air quality, sources of indoor air pollution-organic gases (volatile organic compounds-VOCs) (2007): http://www.epa.gov/iaq/voc.html .
  2. B. D. Gupta, Fiber Optic Sensors: Principles and Applications (New India Publishing Agency, 2006).
  3. M. J. Fernández, J. L. Fontecha, I. Sayago, M. Aleixandre, J. Lozano, J. Gutiérrez, I. Gŕacia, C. Cané, and M. C. Horrillo, “Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors,” Sens. Actuators B Chem.127(1), 277–283 (2007). [CrossRef]
  4. M. A. Ryan, A. V. Shevade, H. Zhou, and M. L. Homer, “Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring,” MRS Bull.29(10), 714–719 (2004). [CrossRef] [PubMed]
  5. F. K. C. Harun, A. M. Jumadi, and M. N. Humaimi, “Carbon black polymer composite gas sensor for electronic nose,” IJSER2(11), 1–7 (2011).
  6. C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, and T. Kerdcharoen, “Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys,” Sens. Actuators B Chem.147(2), 392–399 (2010). [CrossRef]
  7. L. J. Matthew, H. Edrees, I. Kymissis, and K. L. Shepard, “Integrated VOC vapor sensing on FBAR-CMOS array,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Paris, France, 2012), 846–849.
  8. N. A. Pantazis, G. P. Patsis, E. Valamontes, I. Raptis, D. Goustouridis, and M. Sanopoulou, “Capacitive sensor arrays for the real time detection of volatile organic compounds,” in Proceedings of Fifth International Conference on Sensing Technology (Palmerston North, New Zealand, 2011), 422–425. [CrossRef]
  9. K. S. Suslick, N. A. Rakow, and A. Sen, “Colorimetric sensor arrays for molecular recognition,” Tetrahedron60(49), 11133–11138 (2004). [CrossRef]
  10. N. A. Rakow, A. Sen, M. C. Janzen, J. B. Ponder, and K. S. Suslick, “Molecular recognition and discrimination of amines with a colorimetric array,” Angew. Chem. Int. Ed. Engl.44(29), 4528–4532 (2005). [CrossRef] [PubMed]
  11. H. Lin, M. Jang, and K. S. Suslick, “Preoxidation for colorimetric sensor array detection of VOCs,” J. Am. Chem. Soc.133(42), 16786–16789 (2011). [CrossRef] [PubMed]
  12. Y. Q. Chen and C. J. Lu, “Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors,” Sens. Actuators B Chem.135(2), 492–498 (2009). [CrossRef]
  13. D. Mombello, N. L. Pira, L. Belforte, P. Perlo, G. Innocenti, S. Bossi, and M. E. Maffei, “Porous anodic alumina for the adsorption of volatile organic compounds,” Sens. Actuators B Chem.137(1), 76–82 (2009). [CrossRef]
  14. W. Ma, H. Yang, W. Wang, P. Gao, and J. Yao, “Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance,” Sensors (Basel)11(12), 8643–8653 (2011). [CrossRef] [PubMed]
  15. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev.108(2), 400–422 (2008). [CrossRef] [PubMed]
  16. A. Leunga, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem.125(2), 688–703 (2007). [CrossRef]
  17. S. M. Tseng and C. L. Chen, “Side-polished fibers,” Appl. Opt.31(18), 3438–3447 (1992). [CrossRef] [PubMed]
  18. W. G. Jung, S. W. Kim, K. T. Kim, and S. W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett.13(11), 1209–1211 (2001). [CrossRef]
  19. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “pH sensor using langmuir-blodgett overlays on polished optical fibers,” Opt. Lett.22(8), 567–569 (1997). [CrossRef] [PubMed]
  20. J. K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photo-functional polymer,” IEEE Photon. Technol. Lett.15(6), 837–839 (2003). [CrossRef]
  21. S. W. Jang, Y. H. Yun, D. E. Kim, S. J. Lim, S. Y. Park, Y. H. Lee, and S. W. Kang, “Refractive index change by photoinduction of a UV-sensitive SMF-to-PWG coupler,” IEEE Photon. Technol. Lett.18(1), 220–222 (2006). [CrossRef]
  22. H. Abdi and L. J. Williams, “Principal component analysis,” http://www.utdallas.edu/~herve/abdi-awPCA2010.pdf . [CrossRef]
  23. Principal Components Analysis, www.stat.cmu.edu/~cshalizi/490/pca/pca-handout.pdf .
  24. W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B Chem.110(2), 252–259 (2005). [CrossRef]
  25. T. L. S, N. A. George, P. Sureshkumar, P. Radhakrishnan, C. P. Vallabhan, and V. P. Nampoori, “Chemical sensing with microbent optical fiber,” Opt. Lett.26(20), 1541–1543 (2001). [CrossRef] [PubMed]
  26. G. P. Agarwal, Nonlinear Fiber Optics (Springer-Verlag, 2000).
  27. G. P. Agarwal, Fiber-Optic Communication Systems (John Wiley and Sons, Inc., 1992).
  28. C. Reichardt, “Solvatochromic dyes as solvent polarity indicators,” Chem. Rev.94(8), 2319–2358 (1994). [CrossRef]
  29. J. F. Deye, T. A. Berger, and A. G. Anderson, “Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids,” Anal. Chem.62(6), 615–622 (1990). [CrossRef]
  30. E. Buncel and S. Rajagopal, “Solvatochromism and solvent polarity scales,” Acc. Chem. Res.23(7), 226–231 (1990). [CrossRef]
  31. N. A. Murugan, Z. Rinkevicius, and H. Ågren, “Modeling solvatochromism of nile red in water,” Int. J. Quantum Chem.111(7-8), 1521–1530 (2011). [CrossRef]
  32. K. A. Fletcher, I. A. Storey, A. E. Hendricks, S. Pandey, and S. Pandey, “Behavior of the solvatochromic probes Reichardt’s dye pyrene, dansylamide, nile red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6,” Green Chem.3(5), 210–215 (2001). [CrossRef]
  33. E. W. Diana, C. Carlos, F. P. Roberto, and F. A. Pedro, “Dynamic solvatochromism in solvent mixtures,” Pure Appl. Chem.73(3), 405–409 (2001). [CrossRef]
  34. S. K. Gorbatsevich and O. Y. Smirnova, “Solvatochromic and thermochromic shifts of electronic spectra of polar solute molecules in a mixture of polar and nonpolar solvent; the role of solvent-solvent interactions,” J. Chem. Phys.120(3), 1369–1374 (2004). [CrossRef] [PubMed]
  35. A. Marini, A. Muñoz-Losa, A. Biancardi, and B. Mennucci, “What is solvatochromism?” J. Phys. Chem. B114(51), 17128–17135 (2010). [CrossRef] [PubMed]
  36. D. Noukakis and P. Suppan, “Photophysics of aminophthalimides in solution I. steady-state spectroscopy,” J. Lumin.47(6), 285–295 (1991). [CrossRef]
  37. D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem.58(13), 2883–2885 (1986). [CrossRef]
  38. S. H. Yeom, H. Yuan, B. H. Kang, K. J. Kim, D. H. Kwon, S. H. Kim, and S. W. Kang, “VOC gas detection using solvatochromic dye coated sidepolished optical fiber,” in Proceedings of the 14th International Meeting on Chemical Sensors (Nuremberg, Germany, 2012), 1454–1457.
  39. H. Yuan, S. H. Yeom, J. W. Lim, and S. W. Kang, “Side-polished optical fiber odor sensor for VOC detection based on solvatochromism,” Sens. Lett.9(1), 87–91 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited