OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20240–20253

Penalized maximum likelihood estimation of lifetime and amplitude images from multi-exponentially decaying fluorescence signals

Jeongtae Kim, Jiyeong Seok, Hwiin Lee, and Minyung Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20240-20253 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the penalized maximum likelihood estimation of lifetime and amplitude images for fluorescence lifetime imaging microscopy. The proposed method penalizes large variations in the lifetimes and amplitudes in the spatial domain to reduces noise in the images, which is a serious problem in the conventional maximum likelihood estimation method. For an effective optimization of the objective function, we applied an optimization transfer method that is based on a separable surrogate function. Simulations show that the proposed method outperforms the conventional MLE method in terms of the estimation accuracy, and the proposed method yielded less noisy images in real experiments.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(180.2520) Microscopy : Fluorescence microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: June 26, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 13, 2013
Published: August 21, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Jeongtae Kim, Jiyeong Seok, Hwiin Lee, and Minyung Lee, "Penalized maximum likelihood estimation of lifetime and amplitude images from multi-exponentially decaying fluorescence signals," Opt. Express 21, 20240-20253 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999). [CrossRef]
  2. C. W. Chang and M.-A. Mycek, “Enhancing precision in time-domain fluorescence lifetime imaging,” J. Biomed. Opt.15, 056013 (2010). [CrossRef] [PubMed]
  3. W. Becker, “Fluorescence lifetime imaging techniques and applications,” J. Microsc.247, 119–136 (2012). [CrossRef] [PubMed]
  4. M. Kneen, J. Farinas, Y. Li, and A. Verkman, “Green fluorescent protein as a noninvasive intracellular ph indicator,” Biophys. J.74, 1591–1599 (1998). [CrossRef] [PubMed]
  5. P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78, 2127–2137 (2000). [CrossRef] [PubMed]
  6. Z. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J.20, 247–262 (1991). [CrossRef]
  7. M. Kollner and J. Wolfrum, “How many photons are necessary for fluorescence-lifetime measurements?” Chem. Phys. Lett.200, 199 –204 (1992). [CrossRef]
  8. J. Kim and J. Seok, “Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging,” Opt. Express21, 6061–6075 (2013). [CrossRef] [PubMed]
  9. H. Cramer, Mathematical Methods of Statistics (PMS-9), Princeton Landmarks in Mathematics and Physics (Princeton University Press, 1999).
  10. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc.206, 218–224 (2002). [CrossRef] [PubMed]
  11. L. P. Watkins and H. Yang, “Information bounds and optimal analysis of dynamic single molecule measurements,” Biophys. J.86, 4015 – 4029 (2004). [CrossRef] [PubMed]
  12. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A20, 368–379 (2003). [CrossRef]
  13. H. E. Grecco, P. Roda-Navarro, and P. J. Verveer, “Global analysis of time correlated single photon counting fret-flim data,” Opt. Express17, 6493–6508 (2009). [CrossRef] [PubMed]
  14. S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.” Biophys. J.87, 2807–2817 (2004). [CrossRef] [PubMed]
  15. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, and R. M. Clegg, “Two-photon fluorescence lifetime imaging of the skin stratum corneum ph gradient,” Biophys. J.83, 1682–1690 (2002). [CrossRef] [PubMed]
  16. A. Squire and P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc.193, 36–49 (1999). [CrossRef] [PubMed]
  17. D. Sud and M.-A. Mycek, “Image restoration for fluorescence lifetime imaging microscopy (FLIM),” Opt. Express16, 19192–19200 (2008). [CrossRef]
  18. M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Mller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002). [CrossRef] [PubMed]
  19. B. B. Collier and M. J. McShane, “Dynamic windowing algorithm for the fast and accurate determination of luminescence lifetimes,” Anal. Chem.84, 4725–4731 (2012). [CrossRef] [PubMed]
  20. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt.8, 381–390 (2003). [CrossRef] [PubMed]
  21. J. Fessler and A. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating generalized em algorithms,” IEEE Trans. Image Process., 4, 1417–1429 (1995). [CrossRef] [PubMed]
  22. J.-H. Chang, J. Anderson, and J. Votaw, “Regularized image reconstruction algorithms for positron emission tomography,” IEEE Trans. Med. Imag., 23, 1165 – 1175 (2004). [CrossRef]
  23. J. Fessler, “Image reconstruction: Algorithms and analysis,” Online preprint of book in preparation.
  24. A. De Pierro, “A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography,” IEEE Trans. Med. Imag., 14, 132–137 (1995). [CrossRef]
  25. P. Huber, Robust Statistics (Wiley, 1974).
  26. J. Fessler and W. Rogers, “Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs,” IEEE Trans. Image Process., 5, 1346–1358 (1996). [CrossRef] [PubMed]
  27. H.-J. Lin, P. Herman, and J. R. Lakowicz, “Fluorescence lifetime-resolved ph imaging of living cells,” Cytometry Part A52A, 77–89 (2003). [CrossRef]
  28. C. Hille, M. Berg, L. Bressel, D. Munzke, P. Primus, H.-G. Lahmannsraben, and C. Dosche, “Time-domain fluorescence lifetime imaging for intracellular ph sensing in living tissues,” Anal. Bioanal. Chem.391, 1871–1879 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited