OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20274–20279

Ultrafast all-optical modulation in a silicon nanoplasmonic resonator

M. P. Nielsen and A. Y. Elezzabi  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20274-20279 (2013)
http://dx.doi.org/10.1364/OE.21.020274


View Full Text Article

Enhanced HTML    Acrobat PDF (1084 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast all-optical modulation in silicon-based metal-insulator-semiconductor-insulator-metal nanoring resonators through photogeneration of free-carriers using two-photon absorption is presented 3-D through finite difference time domain simulations. In a compact device footprint of only 1.4µm2, a 13.1dB modulation amplitude was obtained with a switching time of only 2ps using a modest pump pulse energy of 16.0pJ. The larger bandwidth associated with more compact nanorings is shown to result in increased modulation amplitude.

© 2013 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(200.6715) Optics in computing : Switching

ToC Category:
Integrated Optics

History
Original Manuscript: May 14, 2013
Revised Manuscript: June 28, 2013
Manuscript Accepted: August 12, 2013
Published: August 22, 2013

Citation
M. P. Nielsen and A. Y. Elezzabi, "Ultrafast all-optical modulation in a silicon nanoplasmonic resonator," Opt. Express 21, 20274-20279 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. P. Berini, R. Charbonneau, S. Jettè-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.101(11), 113114 (2007). [CrossRef]
  3. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008). [CrossRef]
  4. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett.96(12), 121101 (2010). [CrossRef]
  5. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  6. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  7. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express21(7), 8320–8330 (2013). [CrossRef] [PubMed]
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  9. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express17(13), 11045–11056 (2009). [CrossRef] [PubMed]
  10. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express18(19), 19761–19769 (2010). [CrossRef] [PubMed]
  11. S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express19(23), 23494–23503 (2011). [CrossRef] [PubMed]
  12. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  13. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett.50(8), 460–462 (1987). [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  15. J. D. Traylor Kruschwitz and W. T. Pawlewicz, “Optical and durability properties of infrared transmitting thin films,” Appl. Opt.36(10), 2157–2159 (1997). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1998).
  17. N. Suzukim, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Lightwave Technol.25(9), 2495–2501 (2007). [CrossRef]
  18. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  19. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express19(1), 206–217 (2011). [CrossRef] [PubMed]
  20. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  21. R. D. Kekatpure and M. L. Brongersma, “Near-infrared free-carrier absorption in silicon nanocrystals,” Opt. Lett.34(21), 3397–3399 (2009). [CrossRef] [PubMed]
  22. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited