OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20280–20290

SiOC thin films: an efficient light source and an ideal host matrix for Eu2+ ions

Gabriele Bellocchi, Fabio Iacona, Maria Miritello, Tiziana Cesca, and Giorgia Franzò  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20280-20290 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intense luminescence of SiOC layers is studied and its dependence on the parameters of the thermal annealing process elucidated. Although the emission of SiOC is bright enough to be interesting for practical applications, this material is even more promising as a host matrix for optically active Eu ions. Indeed, when incorporated in a SiOC matrix, Eu3+ ions are efficiently reduced to Eu2+, producing a very strong visible luminescence peaked at 440 nm. Eu2+ ions benefit also of the occurrence of an energy transfer mechanism involving the matrix, which increases the efficiency of photon absorption for exciting wavelengths shorter than 300 nm. We evaluate that Eu doping of SiOC produces an enhancement of the luminescence intensity at 440 nm accounting for about a factor of 15. These properties open the way to new promising perspectives for the application of Eu-doped materials in photonic and lighting technologies.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(260.3800) Physical optics : Luminescence

ToC Category:

Original Manuscript: May 16, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 12, 2013
Published: August 22, 2013

Gabriele Bellocchi, Fabio Iacona, Maria Miritello, Tiziana Cesca, and Giorgia Franzò, "SiOC thin films: an efficient light source and an ideal host matrix for Eu2+ ions," Opt. Express 21, 20280-20290 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  2. G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys., A Mater. Sci. Process.69(1), 3–12 (1999). [CrossRef]
  3. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997). [CrossRef]
  4. J. H. Shin, J. Lee, H.-S. Han, J.-H. Jhe, J. S. Chang, S.-Y. Seo, H. Lee, and N. Park, “Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs,” IEEE J. Sel. Top. Quantum Electron.12(4), 783–796 (2006). [CrossRef]
  5. X. Ye, W. Zhuang, Y. Hu, T. He, X. Huang, C. Liao, S. Zhong, Z. Xu, H. Nie, and G. Deng, “Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3:Eu3+ phosphors,” J. Appl. Phys.105(6), 064302 (2009). [CrossRef]
  6. D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010). [CrossRef] [PubMed]
  7. L. Rebohle, J. Lehmann, S. Prucnal, A. Kanjilal, A. Nazarov, I. Tyagulskii, W. Skorupa, and M. Helm, “Blue and red electroluminescence of Europium-implanted metal-oxide-semiconductor structures as a probe for the dynamics of microstructure,” Appl. Phys. Lett.93(7), 071908 (2008). [CrossRef]
  8. L. Rebohle, J. Lehmann, S. Prucnal, A. Nazarov, I. Tyagulskii, S. Tyagulskii, A. Kanjilal, M. Voelskow, D. Grambole, W. Skorupa, and M. Helm, “Anomalous wear-out phenomena of europium-implanted light emitters based on a metal-oxide-semiconductor structure,” J. Appl. Phys.106(12), 123103 (2009). [CrossRef]
  9. S. Prucnal, J. M. Sun, W. Skorupa, and M. Helm, “Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu,” Appl. Phys. Lett.90(18), 181121 (2007). [CrossRef]
  10. N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009). [CrossRef]
  11. J. Laegsgaard, “Theory of Al2O3 incorporation in SiO2,” Phys. Rev. B65(17), 174104 (2002). [CrossRef]
  12. S. Boninelli, G. Bellocchi, G. Franzò, M. Miritello, and F. Iacona, “New strategies to improve the luminescence efficiency of Eu ions embedded in Si-based matrices,” J. Appl. Phys.113(14), 143503 (2013). [CrossRef]
  13. J. Qi, T. Matsumoto, M. Tanaka, and Y. Masumoto, “Electroluminescence of europium silicate thin film on silicon,” Appl. Phys. Lett.74(21), 3203–3205 (1999). [CrossRef]
  14. Y. C. Shin, D. H. Kong, W. C. Choi, and T. G. Kim, “Formation of europium-silicate thin films and their photoluminescence properties,” J. Korean Phys. Soc.48, 1246–1249 (2006).
  15. Y. C. Shin, S. J. Leem, C. M. Kim, S. J. Kim, Y. M. Sung, C. K. Hahn, J. H. Baek, and T. G. Kim, “Deposition of europium oxide on Si and its optical properties depending on thermal annealing conditions,” J. Electroceram.23(2-4), 326–330 (2009). [CrossRef]
  16. G. Bellocchi, G. Franzò, F. Iacona, S. Boninelli, M. Miritello, T. Cesca, and F. Priolo, “Eu3+ reduction and efficient light emission in Eu2O3 films deposited on Si substrates,” Opt. Express20(5), 5501–5507 (2012). [CrossRef] [PubMed]
  17. S.-Y. Seo, K.-S. Cho, and J. H. Shin, “Intense blue-white luminescence from carbon-doped silicon-rich silicon oxide,” Appl. Phys. Lett.84(5), 717–719 (2004). [CrossRef]
  18. S. Gallis, V. Nikas, H. Suhag, M. Huang, and A. E. Kaloyeros, “White light emission from amorphous silicon oxycarbide (a-SiCxOy) thin films: Role of composition and postdeposition annealing,” Appl. Phys. Lett.97(8), 081905 (2010). [CrossRef]
  19. Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng, and S. J. Chua, “Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix,” Chem. Phys. Lett.339(5-6), 319–322 (2001). [CrossRef]
  20. A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “White luminescence from Si+ and C+ ion-implanted SiO2 films,” J. Appl. Phys.94(1), 254–262 (2003). [CrossRef]
  21. Y. Ishikawa, A. V. Vasin, J. Salonen, S. Muto, V. S. Lysenko, A. N. Nazarov, N. Shibata, and V.-P. Lehto, “Color control of white photoluminescence from carbon-incorporated silicon oxide,” J. Appl. Phys.104(8), 083522 (2008). [CrossRef]
  22. Y. Ding and H. Shirai, “White light emission from silicon oxycarbide films prepared by using atmospheric pressure microplasma jet,” J. Appl. Phys.105(4), 043515 (2009). [CrossRef]
  23. A. V. Vasin, Y. Ishikawa, N. Shibata, J. Salonen, and V.-P. Lehto, “Strong white photoluminescence from carbon-incorporated silicon oxide fabricated by preferential oxidation of silicon in nano-structured Si:C layer,” Jpn. J. Appl. Phys.46(19), L465–L467 (2007). [CrossRef]
  24. S. Gallis, M. Huang, and A. E. Kaloyeros, “Efficient energy transfer from silicon oxycarbide matrix to Er ions via indirect excitation mechanisms,” Appl. Phys. Lett.90(16), 161914 (2007). [CrossRef]
  25. Y. Zhang, A. Quaranta, and G. D. Soraru, “Synthesis and luminescent properties of novel Eu2+-doped silicon oxycarbide glasses,” Opt. Mater.24(4), 601–605 (2004). [CrossRef]
  26. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer Verlag, 1994).
  27. X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and S. Zhang, “Photoluminescence properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching,” J. Appl. Phys.106(3), 033103 (2009). [CrossRef]
  28. C. M. Brewer, D. R. Bujalski, V. E. Parent, K. Su, and G. A. Zank, “Insights into the oxidation chemistry of SiOC ceramics derived from silsesquioxanes,” J. Sol-Gel Sci. Technol.14(1), 49–68 (1999). [CrossRef]
  29. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, and S. Gangopadhyaya, “Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization,” J. Appl. Phys.94(8), 5252–5260 (2003). [CrossRef]
  30. J. Y. Kim, M. S. Hwang, Y.-H. Kim, H. J. Kim, and Y. Lee, “Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition,” J. Appl. Phys.90(5), 2469–2473 (2001). [CrossRef]
  31. Q. Zhang, X. Liu, Y. Qiao, B. Qian, G. Dong, J. Ruan, Q. Zhou, J. Qiu, and D. Chen, “Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere,” Opt. Mater.32(3), 427–431 (2010). [CrossRef]
  32. Y. Kishimoto, X. Zhang, T. Hayakawa, and M. Nogami, “Blue light emission from Eu2+ ions in sol-gel-derived Al2O3-SiO2 glasses,” J. Lumin.129(9), 1055–1059 (2009). [CrossRef]
  33. Y. Qiao, D. Chen, J. Ren, B. Wu, J. Qiu, and T. Akai, “Blue emission from Eu2+-doped high silica glass by near-infrared femtosecond laser irradiation,” J. Appl. Phys.103(2), 023108 (2008). [CrossRef]
  34. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, “Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2,” J. Appl. Phys.86(11), 6128–6134 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited