OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20303–20312

Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths

Tong Hoang Tuan, Tonglei Cheng, Koji Asano, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20303-20312 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The parametric amplification gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber (HMOF) are simulated based on four wave mixing process. The fiber core and cladding materials are made of TeO2–Li2O–WO3–MoO3–Nb2O5 and TeO2–ZnO–Na2O–P2O5 glass, respectively. The fiber has four zero-dispersion wavelengths and the chromatic dispersion is flattened near the zero-dispersion wavelengths. A broad gain bandwidth as wide as 1200 nm from 1290 to 2490 nm can be realized in the near infrared window by using a tellurite HMOF as short as 25 cm.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: June 11, 2013
Revised Manuscript: July 27, 2013
Manuscript Accepted: August 2, 2013
Published: August 22, 2013

Tong Hoang Tuan, Tonglei Cheng, Koji Asano, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi, "Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths," Opt. Express 21, 20303-20312 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett.21(8), 573–575 (1996). [CrossRef] [PubMed]
  2. R. Dabu, “Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy,” Opt. Express18(11), 11689–11699 (2010). [CrossRef] [PubMed]
  3. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001). [CrossRef] [PubMed]
  4. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express21(3), 2707–2717 (2013). [CrossRef] [PubMed]
  5. G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998). [CrossRef]
  6. A. L. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett.30(18), 2375–2377 (2005). [CrossRef] [PubMed]
  7. C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011). [CrossRef] [PubMed]
  8. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002). [CrossRef]
  9. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009). [CrossRef] [PubMed]
  10. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B28(12), A1–A10 (2011). [CrossRef]
  11. J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002). [CrossRef]
  12. J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001). [CrossRef]
  13. J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001). [CrossRef]
  14. J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gbit/s eye-diagram measurement by optical sampling using fiber based parametric amplification,”in Proceedings of the Optical Fiber Communication (OFC) Conf. and Exhibit 4, (2001).
  15. J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B10(11), 2233–2238 (1993). [CrossRef]
  16. K. Inoue, “Four wave mixing in an optical fiber in the zero dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992). [CrossRef]
  17. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazosky, “200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol.19(7), 977–981 (2001). [CrossRef]
  18. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005). [CrossRef]
  19. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005). [CrossRef]
  20. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett.6(5), 213–215 (1981). [CrossRef] [PubMed]
  21. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29(8), 1959–1976 (2012). [CrossRef]
  22. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011). [CrossRef] [PubMed]
  23. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).
  24. A. X. Lin, A. Ryasnyanskiy, and J. Toulouse, “Tunable third-harmonic generation in a solid-core tellurite glass fiber,” Opt. Lett.36(17), 3437–3439 (2011). [CrossRef] [PubMed]
  25. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009). [CrossRef] [PubMed]
  26. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  27. Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite composite microstructured optical fibers with tailored chromatic dispersion for nonlinear applications,” Appl. Phys. Express4(72502), 1–3 (2011).
  28. T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012). [CrossRef]
  29. M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008). [CrossRef] [PubMed]
  30. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited