OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20346–20362

Ergodic capacity comparison of optical wireless communications using adaptive transmissions

Md. Zoheb Hassan, Md. Jahangir Hossain, and Julian Cheng  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20346-20362 (2013)
http://dx.doi.org/10.1364/OE.21.020346


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ergodic capacity is investigated for the optical wireless communications employing subcarrier intensity modulation with direct detection, and coherent systems with and without polarization multiplexing over the Gamma-Gamma turbulence channels. We consider three different adaptive transmission schemes: (i) variable-power, variable-rate adaptive transmission, (ii) complete channel inversion with fixed rate, and (iii) truncated channel inversion with fixed rate. For the considered systems, highly accurate series expressions for ergodic capacity are derived using a series expansion of the modified Bessel function and the Mellin transformation of the Gamma-Gamma random variable. Our asymptotic analysis reveals that the high SNR ergodic capacities of coherent, subcarrier intensity modulated, and polarization multiplexing systems gain 0.33 bits/s/Hz, 0.66 bits/s/Hz, and 0.66 bits/s/Hz respectively with 1 dB increase of average transmitted optical power. Numerical results indicate that a polarization control error less than 10° has little influence on the capacity performance of polarization multiplexing systems.

© 2013 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 14, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: August 2, 2013
Published: August 22, 2013

Citation
Md. Zoheb Hassan, Md. Jahangir Hossain, and Julian Cheng, "Ergodic capacity comparison of optical wireless communications using adaptive transmissions," Opt. Express 21, 20346-20362 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24, 4750–4762 (2006). [CrossRef]
  2. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59, 1368–1377 (2011). [CrossRef]
  3. Md. Z. Hassan, Md. J. Hossain, and J. Cheng, “Performance of non-adaptive and adaptive subcarrier intensity modulations in Gamma-Gamma turbulence,” IEEE. Trans Commun.61, 2946–2957 (2013). [CrossRef]
  4. F. Lazarakis, G. S. Tombras, and K. Dangakis, “Average channel capacity in a mobile radio environment with Rician statistics,” IEICE Trans. Commun.E77-B, 971–977 (1994).
  5. S. M. Haas and J. H. Shapiro, “Capacity of wireless optical communications,” IEEE J. Sel. Areas Commun.21,pp. 1346–1357 (2003). [CrossRef]
  6. A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using diversity-combining techniques,” Opt. Express17, 12601–12611 (2009). [CrossRef] [PubMed]
  7. A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using atmospheric compensation techniques,” Opt. Express17, 2763–2773 (2009). [CrossRef] [PubMed]
  8. C. Liu, Y. Yao, Y. Sun, and X. Zhao, “Average capacity for heterodyne FSO communication systems over Gamma-Gamma turbulence channels with pointing errors,” Electron. Lett.46, 851–853 (2010). [CrossRef]
  9. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average capacity of optical wireless communication systems over atmospheric turbulence channels,” J. Lightwave Technol.27, 974–979 (2009). [CrossRef]
  10. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun.3, 1402–1409 (2009). [CrossRef]
  11. H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett.44, 46–47 (2008). [CrossRef]
  12. K. P. Peppas, A. N. Stassinakis, G. K. Topalis, H. E. Nistazakis, and G. S. Tombras, “Average capacity of optical wireless communication systems over I− K atmospheric turbulence channels,” J. Opt. Commun. Netw.4, 1026–1032 (2012). [CrossRef]
  13. G. Pan, E. Ekici, and Q. Feng, “Capacity analysis of log-normal channels under various adaptive transmission schemes,” IEEE Commun. Lett.16, 346–348 (2012). [CrossRef]
  14. I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” J. Opt. Commun. Netw.2, 221–229 (2010). [CrossRef]
  15. I. B. Djordjevic and G. T. Djordjevic, “On the communication over strong atmospheric turbulence channels by adaptive modulation and coding,” Opt. Express17, 18250–18262 (2009). [CrossRef] [PubMed]
  16. A. Laourine, M.-S. Alouini, S. Affes, and A. Stéphenne, “On the capacity of generalized-K fading channels,” IEEE Trans. Wireless Commun.7, 2441–2445 (2008). [CrossRef]
  17. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5, 1262–1267 (2010). [CrossRef]
  18. N. Cvijetic, D. Y. Qian, J. J. Yu, Y. K. Huang, and T. Wang, “Polarisation-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol.28, 1218–1227 (2010). [CrossRef]
  19. G. D. Xie, F. X. Wang, A. Dang, and H. Guo, “A novel polarisation-multiplexing system for free-space optical links,” IEEE Photon. Technol. Lett.23, 1484–1486 (2011). [CrossRef]
  20. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw.4, 586–601 (2005). [CrossRef]
  21. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the capacity of FSO links over Gamma-Gamma atmospheric turbulence channels using OOK signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi: [CrossRef]
  22. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001). [CrossRef]
  23. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2000).
  24. N. Wang and J. Cheng, “Moment-based estimation for the shape parameters of the Gamma-Gamma atmospheric turbulence model,” Opt. Express18, 12824–12831 (2010). [CrossRef] [PubMed]
  25. Md. Z. Hassan, X. Song, and J. Cheng, “Subcarrier intensity modulated wireless optical communications with rectangular QAM,” J. Opt. Commun. Netw.6, 522–532 (2012). [CrossRef]
  26. M. Niu, “Coherent optical wireless communications over atmnospheric turbulence channels,” Ph. D. Thesis, The University of British Columbia (2012).
  27. M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over Gamma-Gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., 3, 860–869 (2011). [CrossRef]
  28. D. Banerjee, PLL Performance, Simulation and Design (National Semiconductor, 2006).
  29. E. J. Lee and V. W. S. Chan, “Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference,” J. Opt. Commun. Netw.1, 463–483 (2009). [CrossRef]
  30. X. Zhao, Y. Yao, Y. Sun, and C. Liu, “Circle polarisation shift-keying with direct detection for free-space optical communication,” J. Opt. Commun. Netw.1, 307–312 (2009). [CrossRef]
  31. I. B. Djordjevic, L. Xu, and T. Wang, “Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection,” J. Opt. Commun. Netw.1, 50–56 (2009). [CrossRef]
  32. J. Grosinger, “Investigation of polarisation modulation in optical free space communications through the atmosphere,” Master thesis, Technical University of Vienna (2008).
  33. G. P. Agrawal, Fiber-Optical Communication Systems (Wiley, 2002). [CrossRef]
  34. A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Info. Theory43, 1986–1992 (1997). [CrossRef]
  35. N. Cressie, A. S. Davis, J. L. Folks, and G. E. Policello, “The moment-generating function and negative integer moments,” The American Statistician35, 148–150 (1981).
  36. The Wolframe Function Site. [Online]: http://functions.wolfram.com .
  37. J. M. Hunt, F. Holmes, and F. Amizajerdian, “Optimum local oscialltor levels for coherent detection using photodetectors,” Appl. Opt.27, 3135–3141 (1988). [CrossRef] [PubMed]
  38. P. Galambos and I. Simonelli, Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions (Marcel Dekker Inc., 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited