OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20423–20440

Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system

Wen-ju Gu and Gao-xiang Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20423-20440 (2013)
http://dx.doi.org/10.1364/OE.21.020423


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the generation of squeezed state of the mirror motion in a dissipative optomechanical system driven with a strong laser field accompanied with two periodically-modulated lights. Using the density operator approach we calculate the variances of quantum fluctuations around the classical orbits. Both the numerical and analytical results predict that the squeezed state of the mirror motion around its ground state is achievable. Moreover, the obtained squeezed state is robust against the thermal noise because of the strong cooling effect outside the resolved-sideband regime, which arises from the destructive interference of quantum noise.

© 2013 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Quantum Optics

History
Original Manuscript: July 31, 2013
Manuscript Accepted: August 7, 2013
Published: August 22, 2013

Citation
Wen-ju Gu and Gao-xiang Li, "Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system," Opt. Express 21, 20423-20440 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Stannigel, P. Rabl, A. S. Sorensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett.105, 220501 (2010). [CrossRef]
  2. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. L. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett.107, 133601 (2011). [CrossRef] [PubMed]
  3. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett.107, 063601 (2011). [CrossRef] [PubMed]
  4. B. He, “Quantum optomechanics beyond linearization,” Phys. Rev. A85, 063820 (2012). [CrossRef]
  5. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol.7, 509514 (2012). [CrossRef]
  6. Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A59, 3032–3037 (1999). [CrossRef]
  7. I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, “Probing Planck-scale physics with quantum optics,” Nat. Phys.8393–397 (2012). [CrossRef]
  8. A. Nunnenkamp, K. Borkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett.107, 063602 (2011). [CrossRef] [PubMed]
  9. T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett.110, 193602 (2013). [CrossRef] [PubMed]
  10. G. Z. Cohen and M. Di Ventra, “Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID,” Phys. Rev. B87, 014513 (2013). [CrossRef]
  11. M. T. Jaekel and S. Reynaud, “Quantum limits in interferometric measurements,” Europhys. Lett.13, 301–306 (1990). [CrossRef]
  12. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5, 909–914 (2009). [CrossRef]
  13. Y. Wu and C. Côté, “Quadrature-dependent bogoliubov transformations and multiphoton squeezed states,” Phys. Rev. A66, 025801 (2002). [CrossRef]
  14. M. F. Bocko and R. Onofrio, “On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress,” Rev. Mod. Phys.68, 755–799 (1996). [CrossRef]
  15. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezing of light via refection from a silicon micromechanical resonator,” arXiv: 1302.6179v2 (2013).
  16. T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” arXiv: 1306.1268v2 (2013).
  17. A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys.10, 095010 (2008). [CrossRef]
  18. S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A79, 013821 (2009). [CrossRef]
  19. H. Ian, Z. R. Gong, Yu-xi Liu, C. P. Sun, and Franco Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A78, 013824 (2008). [CrossRef]
  20. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A79, 063819 (2009). [CrossRef]
  21. A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A86, 013820 (2012). [CrossRef]
  22. A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett.103, 213603 (2009). [CrossRef]
  23. B. Rogers, M. Paternostro, G. M. Palma, and G. De Chiara, “Entanglement control in hybrid optomechanical systems,” Phys. Rev. A86, 042323 (2012). [CrossRef]
  24. P. Doria, T. Calarco, and S. Montangero, “Optimal control technique for many-body quantum dynamics,” Phys. Rev. Lett.106, 190501 (2011). [CrossRef] [PubMed]
  25. F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett.102, 207209 (2009). [CrossRef] [PubMed]
  26. A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson–Sagnac interferometer,” Phys. Rev. Lett.107, 213604 (2011). [CrossRef]
  27. W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A88, 013835 (2013). [CrossRef]
  28. K. Yamamoto, D. Friedrich, T. Westphal, S. Gobler, K. Danzmann, K. Somiya, S. L. Danilishin, and R. Schnabel, “Quantum noise of a Michelson–Sagnac interferometer with a translucent mechanical oscillator,” Phys. Rev. A81, 033849 (2010). [CrossRef]
  29. D. Friedrich, H. Kaufer, T. Westphal, K. Yamamoto, A. Sawadsky, F. Y. Khalili, S. L. Danilishin, S. Gobler, K. Danzmann, and R. Schnabel, “Laser interferometry with translucent and absorbing mechanical oscillators,” New J. Phys.13, 093017 (2011). [CrossRef]
  30. T. Weiss, C. Bruder, and A. Nunnenkamp, “Strong-coupling effects in dissipatively coupled optomechanical systems,” New J. Phys.15, 045017 (2013). [CrossRef]
  31. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997). [CrossRef]
  32. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1990).
  33. C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlarg, 2000).
  34. G. Teschl, Ordinary Differential Equations and Dynamical Systems, http://www.mat.univie.ac.at/gerald .
  35. L. H. Sun, G. X. Li, and Z. Ficek, “First-order coherence versus entanglement in a nanomechanical cavity,” Phys. Rev. A85, 022327 (2012). [CrossRef]
  36. X. G. Wang and B. C. Sanders, “Relations between bosonic quadrature squeezing and atomic spin squeezing,” Phys. Rev. A68, 033821 (2003). [CrossRef]
  37. M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A78, 062303 (2008). [CrossRef]
  38. M. P. Blencowe and M. N. Wybourne, “Quantum squeezing of mechanical motion for micron-sized cantilevers,” Physica B280, 555–556 (2000). [CrossRef]
  39. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008). [CrossRef]
  40. P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering,” Phys. Rev. B70, 205304 (2004). [CrossRef]
  41. G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett.97, 023601 (2006). [CrossRef] [PubMed]
  42. G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A76, 053827 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited